共检索到 7

【目的】探究利用时序形变分形特征识别高山冰川区滑坡的方法并分析其适用性。【方法】基于查莫利滑坡及其相邻冰川的形变时间序列描述其斜率(平均形变速率)及分形特征差异,利用聚类分析区分滑坡区域与冰川并进行影响因素分析。【结果】与冰川相比,滑坡的形变时序具有较高的分形维数和较低的分形拟合优度。虽然滑坡与冰川在形变时序的斜率(平均形变速率)上也存在较大差异,但仅使用形变速率难以对滑坡进行聚类识别,准确率仅为61.70%;而使用形变时序的分形指标(包括分形维数和分形拟合优度)可将聚类分析的准确率显著提升至近84.00%。基于形变时序分形特征进行高山冰川区滑坡识别的适用性,根本原因在于滑坡和冰川在物质组成、影响因素和发展演化等方面存在差异。相较冰川,滑坡物质组成更复杂、更易受多种因素影响、形变时序的波动性更强。【结论】利用形变时序分形特征能够成功识别高山冰川区滑坡,在全球变暖背景下,该方法预期可为高山冰川区的滑坡识别、进而为高山冰川区的防灾减灾提供一定的支撑。

期刊论文 2025-01-07

【目的】探究利用时序形变分形特征识别高山冰川区滑坡的方法并分析其适用性。【方法】基于查莫利滑坡及其相邻冰川的形变时间序列描述其斜率(平均形变速率)及分形特征差异,利用聚类分析区分滑坡区域与冰川并进行影响因素分析。【结果】与冰川相比,滑坡的形变时序具有较高的分形维数和较低的分形拟合优度。虽然滑坡与冰川在形变时序的斜率(平均形变速率)上也存在较大差异,但仅使用形变速率难以对滑坡进行聚类识别,准确率仅为61.70%;而使用形变时序的分形指标(包括分形维数和分形拟合优度)可将聚类分析的准确率显著提升至近84.00%。基于形变时序分形特征进行高山冰川区滑坡识别的适用性,根本原因在于滑坡和冰川在物质组成、影响因素和发展演化等方面存在差异。相较冰川,滑坡物质组成更复杂、更易受多种因素影响、形变时序的波动性更强。【结论】利用形变时序分形特征能够成功识别高山冰川区滑坡,在全球变暖背景下,该方法预期可为高山冰川区的滑坡识别、进而为高山冰川区的防灾减灾提供一定的支撑。

期刊论文 2025-01-07

【目的】探究利用时序形变分形特征识别高山冰川区滑坡的方法并分析其适用性。【方法】基于查莫利滑坡及其相邻冰川的形变时间序列描述其斜率(平均形变速率)及分形特征差异,利用聚类分析区分滑坡区域与冰川并进行影响因素分析。【结果】与冰川相比,滑坡的形变时序具有较高的分形维数和较低的分形拟合优度。虽然滑坡与冰川在形变时序的斜率(平均形变速率)上也存在较大差异,但仅使用形变速率难以对滑坡进行聚类识别,准确率仅为61.70%;而使用形变时序的分形指标(包括分形维数和分形拟合优度)可将聚类分析的准确率显著提升至近84.00%。基于形变时序分形特征进行高山冰川区滑坡识别的适用性,根本原因在于滑坡和冰川在物质组成、影响因素和发展演化等方面存在差异。相较冰川,滑坡物质组成更复杂、更易受多种因素影响、形变时序的波动性更强。【结论】利用形变时序分形特征能够成功识别高山冰川区滑坡,在全球变暖背景下,该方法预期可为高山冰川区的滑坡识别、进而为高山冰川区的防灾减灾提供一定的支撑。

期刊论文 2025-01-07

高山冰川地貌因垂向落差大,受垂直性气候条件和局地水热环境影响,造就了典型的垂直分带性特征。而地质灾害作为表生岩土圈动态平衡失稳外在动力形式,必然与其禀赋的构造地貌与气候环境密切相关。基于青藏高原冰川地貌区地貌特征及地质灾害统计分析,梳理各地貌单元垂直分带性界限标志及典型特征,进而构建高山冰川地貌区垂直分带性与地质灾害的空间配置关系。研究表明:(1)高山冰川地貌区可按雪线、冰线、雨线与高山苔原线等“四线”进行界限标志划分,且大陆性与海洋性冰川地貌区界限高度存在显著差异;(2)夷平面为高山冰川地貌区地质灾害重要物源场所,因冰川类型差异存在明显不同。具体而言,大陆性冰川区普遍存在山顶面、高原面2级夷平面物源区;而海洋性冰川区则普遍存在山顶面、山前侵蚀面及河谷侵蚀面3级夷平面物源区。(3)高山冰川地貌区地质灾害按照“四线”界限标志存在典型的垂直分带性特征,具体按照“四线”界限范围、动力地质作用方式、海拔高度可划分为:超高位冰蚀型(雪线以上/冰–岩作用带,对应划分依据,下同)、高位溃蚀型(雪线–冰线之间/冰–水–岩屑作用带)、中位冻融剥蚀型(冰线附近/冰–水–土作用带)及低位降水侵蚀型(高山苔原...

期刊论文 2023-06-19 DOI: 10.13722/j.cnki.jrme.2022.0864

高山冰川地貌因垂向落差大,受垂直性气候条件和局地水热环境影响,造就了典型的垂直分带性特征。而地质灾害作为表生岩土圈动态平衡失稳外在动力形式,必然与其禀赋的构造地貌与气候环境密切相关。基于青藏高原冰川地貌区地貌特征及地质灾害统计分析,梳理各地貌单元垂直分带性界限标志及典型特征,进而构建高山冰川地貌区垂直分带性与地质灾害的空间配置关系。研究表明:(1)高山冰川地貌区可按雪线、冰线、雨线与高山苔原线等“四线”进行界限标志划分,且大陆性与海洋性冰川地貌区界限高度存在显著差异;(2)夷平面为高山冰川地貌区地质灾害重要物源场所,因冰川类型差异存在明显不同。具体而言,大陆性冰川区普遍存在山顶面、高原面2级夷平面物源区;而海洋性冰川区则普遍存在山顶面、山前侵蚀面及河谷侵蚀面3级夷平面物源区。(3)高山冰川地貌区地质灾害按照“四线”界限标志存在典型的垂直分带性特征,具体按照“四线”界限范围、动力地质作用方式、海拔高度可划分为:超高位冰蚀型(雪线以上/冰–岩作用带,对应划分依据,下同)、高位溃蚀型(雪线–冰线之间/冰–水–岩屑作用带)、中位冻融剥蚀型(冰线附近/冰–水–土作用带)及低位降水侵蚀型(高山苔原...

期刊论文 2023-06-19 DOI: 10.13722/j.cnki.jrme.2022.0864

中亚高山冰川区地形复杂,站点观测和传统实地测量范围十分有限。卫星激光测高技术可实现大范围冰川表面高程变化监测。以2003—2009年ICESat激光测高数据为数据源,参考2000年的SRTM高程数据,建立冰川区点云去噪及其精度优化算法和多尺度冰川区表面高程时空变化分析模型,并分析了2003—2009年间中亚山区整体与各分区冰川表面高程时序变化。结果表明:中亚高山冰川区的冰川表面平均高程整体呈下降趋势,表现出明显的区域差异。其中,2003—2009年中亚冰川表面高程总体下降了9.59±1.89 m;Ⅰ区(即西藏和青海南部)的冰川表面高程下降了6.51±2.9 m;Ⅱ区(即新疆、青海北部和甘肃部分地区)下降了7.87±5.03 m;Ⅲ区(即中国境外,中亚地区的部分国家)下降了9.81±5.1 m,且监测到2004—2005年冰川表面高程上升。本研究方法对冰川区点云类高程脚点监测具有一定的通用性,但对基准DEM的依赖度较高。

期刊论文 2022-03-23 DOI: 10.13866/j.azr.2022.03.02

中亚高山冰川区地形复杂,站点观测和传统实地测量范围十分有限。卫星激光测高技术可实现大范围冰川表面高程变化监测。以2003—2009年ICESat激光测高数据为数据源,参考2000年的SRTM高程数据,建立冰川区点云去噪及其精度优化算法和多尺度冰川区表面高程时空变化分析模型,并分析了2003—2009年间中亚山区整体与各分区冰川表面高程时序变化。结果表明:中亚高山冰川区的冰川表面平均高程整体呈下降趋势,表现出明显的区域差异。其中,2003—2009年中亚冰川表面高程总体下降了9.59±1.89 m;Ⅰ区(即西藏和青海南部)的冰川表面高程下降了6.51±2.9 m;Ⅱ区(即新疆、青海北部和甘肃部分地区)下降了7.87±5.03 m;Ⅲ区(即中国境外,中亚地区的部分国家)下降了9.81±5.1 m,且监测到2004—2005年冰川表面高程上升。本研究方法对冰川区点云类高程脚点监测具有一定的通用性,但对基准DEM的依赖度较高。

期刊论文 2022-03-23 DOI: 10.13866/j.azr.2022.03.02
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页