针对全球气候变暖导致青藏高原冻土不断退化,进而影响冻土区的植被生长状况的问题,该文基于2001—2020年MOD13Q1归一化植被指数,并利用像元二分法反演其对应的植被覆盖度(FVC),最后通过趋势分析和相关分析法对FVC的时空分布及其与气象因子的响应机制进行了深入研究。结果表明,20年间青藏高原冻土区FVC均值呈上升趋势,增速依次为片状多年冻土区(0.001 7/a)>季节冻土区(0.001 0/a)>多年冻土区(0.000 8/a)>岛状多年冻土区(0.000 5/a),空间上总体表现为“西北低、东南高”的分布特点。空间变化趋势上,青藏高原冻土区FVC整体以稳定为主,但呈改善趋势,显著增加面积占比大于显著减少面积之比,显著增加面积占比分别为片状多年冻土区(30.26%)>多年冻土区(24.04%)>季节冻土区(19.94%)>岛状多年冻土区(8.24%)。青藏高原冻土区FVC受气温和降水两种气象因子的影响,但是与降水的相关性更强。随气温升高,青藏高原冻土区FVC与气温的相关性从正相关转变为负相关,因此从长期来看,全球气候变暖导致的冻土退化不利于植...
高原冻土区地质条件复杂,冻土地基的差异性冻胀和融沉变形威胁着工程的长期稳定性和服役性能。为满足工程基础的工后沉降与沉降差要求,同时减少对下部冻土的扰动,以多年冻融区过渡段某富水场地为例,开展地基处理现场试验,对比块石抛填和块石抛填+换填两种地基处理施工方案。结果表明,针对包括淤泥质泥岩、粉砂质土、中粗砂、冻融区过渡带四种工程地质条件,采用块石抛填方案均出现翻浆、冒泥等现象,无法碾压达成地基处理要求,而采用块石抛填+换填处理方案,经8~10遍碾压后,压实度均能达到要求。
高原冻土区管道建设面临着地质复杂、高寒缺氧、土体冻融、社会依托差等不利因素,因此,为高原冻土区管道的建设及运营提供有效的技术支撑一直是难题。以高原冻土区某管道为例,明确高原冻土区管道智能化建设中全生命周期管理系统、全生命周期数据中心、运营维护信息化平台、设计数据信息平台、采办数据信息平台及施工数据信息平台之间的相互关系及运行模式,从而确立高原冻土区智能管道的建设目标。未来高原冻土区智能管道建设要建立数据体系与标准规范,实现场站集成橇装与地上化,引入新兴信息技术提升智能管道建设,同时还应注重自然环境监测。高原冻土区管道智能化建设模式及成果将为同类工程的建设提供经验借鉴。
文章结合高原冻土区域的特点,阐述了沥青路面施工技术与质量控制意义,指出高原冻土区域的施工现状以及高原环境对现场施工造成的影响,并针对沥青路面施工技术与质量控制对策进行研究。
以西藏羊大公路改建工程为依托,研究了高原冻土地区公路边坡稳定性及加固施工技术。采用有限元分析软件Midas-GTS NX建立4种公路模型,分析了边坡在增设加固措施前后与冻融循环前后的内力变化和结构变形位移等力学指标变化规律,并因地制宜进行施工优化。研究结果表明:模型经历冻融循环后竖向应力及水平应力值均有效降低;对比分析证明:挡土墙可以有效降低竖向位移值和水平位移值;增设路肩墙后竖向沉降降低50.79%,水平位移变化值更快趋于稳定且均降低至20 mm以下。将建模理论计算值与工程监测值进行对比分析验证了该文方法的正确性。
高原冻土施工条件欠佳,于该处组织路基施工时难度较大,对组织计划、施工工艺、材料和机械等均提出较高的要求,某方面工作缺乏合理性时均容易引发质量或安全层面的问题。本文以高原冻土区的实际情况为立足点,制定可行的施工方案,并探讨了相关技术要点,以供相关施工人员参考,在安全的环境下保质保量完成路基施工作业。
锥柱基础形式以其明显的抗冻拔优点,被广泛应用于高原冻土区的输电线路基础建设。玻璃钢模板抗冻技术则是对锥柱基础抗冻能力的进一步完善。简述冻土区采用锥柱基础的特点和施工工艺;从输电线路路径的复测、冻土区基坑的开挖与回填、玻璃钢模板的安装和低温下混凝土的浇筑等方面,重点阐明了高原冻土区锥柱基础施工中的质量控制要点;归纳总结了冻土区锥柱基础的质量验收及评定标准。
针对我国西藏地区高原冻土路基施工,在简述其施工基本要求的基础上,提出施工方案、工艺方法,并对质量控制的要点进行深入分析,以此为实际的高原冻土区路基施工提供技术参考,以保证施工顺利完成,达到预期质量目标。
结合工程实例,阐述了冻土路基类型,分析了冻土路基处理方案,从一般填方路基、片块石路基、热棒路基、土工格栅等方面探讨了冻土路基施工技术控制措施,可为相关施工提供参考。
伴随着市场经济的全面进步和发展,道路交通事业的进步受到了广泛重视,其中,高原冻土区路基施工项目因为环境较为恶劣以及施工难度较大,需要施工部门在结合施工现场具体情况分析的基础上,有效建构完整的技术体系,科学化提高高原冻土区路基施工质量,延长公路使用寿命。本文简要分析了高原冻土区路基施工的要点,并对施工技术和质量控制机制展开了讨论,仅供参考。