利用1990—2024年间的Landsat遥感影像与气象数据,文章通过多时相影像计算归一化水体指数NDWI,结合K-means聚类方法计算羊卓雍措面积,并用一元线性拟合分析其变化趋势。羊湖在1996—2004年间显著扩张,受降水和融水补给增加,输入量超过输出量;2004—2014年间则经历了明显的缩减,归因于气温升高加剧蒸发,且融水和降水输入未显著变化,导致输入量小于输出量。利用傅里叶变换分析湖泊面积时序特征,发现其变化具有低频特性。在不同时间尺度上,羊湖面积的变化受降水、气温和积雪影响的具体过程各不相同。在超过15年周期(0.03 Hz,0.06 Hz)的低频变化中,羊湖面积与降水呈弱相关性,主要受到气温升高和积雪融化的影响,涉及蒸发量的增减以及积雪融化的促进或抑制。在10~15年周期(0.09 Hz,0.12 Hz)范围内,湖泊面积变化由降水和气温共同调控,影响湖泊水量的收支平衡。气候变暖是驱动羊湖面积年代尺度上变化的主要因素。
利用1990—2024年间的Landsat遥感影像与气象数据,文章通过多时相影像计算归一化水体指数NDWI,结合K-means聚类方法计算羊卓雍措面积,并用一元线性拟合分析其变化趋势。羊湖在1996—2004年间显著扩张,受降水和融水补给增加,输入量超过输出量;2004—2014年间则经历了明显的缩减,归因于气温升高加剧蒸发,且融水和降水输入未显著变化,导致输入量小于输出量。利用傅里叶变换分析湖泊面积时序特征,发现其变化具有低频特性。在不同时间尺度上,羊湖面积的变化受降水、气温和积雪影响的具体过程各不相同。在超过15年周期(0.03 Hz,0.06 Hz)的低频变化中,羊湖面积与降水呈弱相关性,主要受到气温升高和积雪融化的影响,涉及蒸发量的增减以及积雪融化的促进或抑制。在10~15年周期(0.09 Hz,0.12 Hz)范围内,湖泊面积变化由降水和气温共同调控,影响湖泊水量的收支平衡。气候变暖是驱动羊湖面积年代尺度上变化的主要因素。
利用1990—2024年间的Landsat遥感影像与气象数据,文章通过多时相影像计算归一化水体指数NDWI,结合K-means聚类方法计算羊卓雍措面积,并用一元线性拟合分析其变化趋势。羊湖在1996—2004年间显著扩张,受降水和融水补给增加,输入量超过输出量;2004—2014年间则经历了明显的缩减,归因于气温升高加剧蒸发,且融水和降水输入未显著变化,导致输入量小于输出量。利用傅里叶变换分析湖泊面积时序特征,发现其变化具有低频特性。在不同时间尺度上,羊湖面积的变化受降水、气温和积雪影响的具体过程各不相同。在超过15年周期(0.03 Hz,0.06 Hz)的低频变化中,羊湖面积与降水呈弱相关性,主要受到气温升高和积雪融化的影响,涉及蒸发量的增减以及积雪融化的促进或抑制。在10~15年周期(0.09 Hz,0.12 Hz)范围内,湖泊面积变化由降水和气温共同调控,影响湖泊水量的收支平衡。气候变暖是驱动羊湖面积年代尺度上变化的主要因素。
周期性形成的克亚吉尔冰川阻塞湖突然排水导致的洪水灾害对下游构成严重威胁。在全球气候变暖背景下,开展克亚吉尔冰川阻塞湖的监测预警研究尤为必要。本文基于1990—2023年的多源光学遥感数据,分析了克亚吉尔冰川阻塞湖面积变化以及突然排水情况,利用面积-体积经验公式和历史洪水数据,以最小排水体积为临界值,推算出克亚吉尔冰川阻塞湖突发洪水的警戒湖面面积。同时,通过建立排水体积与净洪峰流量的关系,验证了警戒面积的合理性。结果表明:克亚吉尔冰川阻塞湖在过去的34 a间共发生了20次突然排水事件,其中17次形成突发洪水,1996—2009年和2015—2019年是反复蓄水和排水的两个不稳定期。冰湖警戒面积为1.046 km2,其突然排水产生的净洪峰流量为418 m3·s-1。尽管克亚吉尔冰川阻塞湖面积呈下降趋势,但其引发的洪水灾害风险并未降低,克亚吉尔冰川阻塞湖突发洪水与基本径流叠加仍可能对下游构成威胁。当冰湖面积接近警戒面积时,应密切监测冰湖的变化,同时结合水文站基本径流情况进行早期预警。本研究提出的警戒面积指标及其确定方法为克亚吉...
周期性形成的克亚吉尔冰川阻塞湖突然排水导致的洪水灾害对下游构成严重威胁。在全球气候变暖背景下,开展克亚吉尔冰川阻塞湖的监测预警研究尤为必要。本文基于1990—2023年的多源光学遥感数据,分析了克亚吉尔冰川阻塞湖面积变化以及突然排水情况,利用面积-体积经验公式和历史洪水数据,以最小排水体积为临界值,推算出克亚吉尔冰川阻塞湖突发洪水的警戒湖面面积。同时,通过建立排水体积与净洪峰流量的关系,验证了警戒面积的合理性。结果表明:克亚吉尔冰川阻塞湖在过去的34 a间共发生了20次突然排水事件,其中17次形成突发洪水,1996—2009年和2015—2019年是反复蓄水和排水的两个不稳定期。冰湖警戒面积为1.046 km2,其突然排水产生的净洪峰流量为418 m3·s-1。尽管克亚吉尔冰川阻塞湖面积呈下降趋势,但其引发的洪水灾害风险并未降低,克亚吉尔冰川阻塞湖突发洪水与基本径流叠加仍可能对下游构成威胁。当冰湖面积接近警戒面积时,应密切监测冰湖的变化,同时结合水文站基本径流情况进行早期预警。本研究提出的警戒面积指标及其确定方法为克亚吉...
周期性形成的克亚吉尔冰川阻塞湖突然排水导致的洪水灾害对下游构成严重威胁。在全球气候变暖背景下,开展克亚吉尔冰川阻塞湖的监测预警研究尤为必要。本文基于1990—2023年的多源光学遥感数据,分析了克亚吉尔冰川阻塞湖面积变化以及突然排水情况,利用面积-体积经验公式和历史洪水数据,以最小排水体积为临界值,推算出克亚吉尔冰川阻塞湖突发洪水的警戒湖面面积。同时,通过建立排水体积与净洪峰流量的关系,验证了警戒面积的合理性。结果表明:克亚吉尔冰川阻塞湖在过去的34 a间共发生了20次突然排水事件,其中17次形成突发洪水,1996—2009年和2015—2019年是反复蓄水和排水的两个不稳定期。冰湖警戒面积为1.046 km2,其突然排水产生的净洪峰流量为418 m3·s-1。尽管克亚吉尔冰川阻塞湖面积呈下降趋势,但其引发的洪水灾害风险并未降低,克亚吉尔冰川阻塞湖突发洪水与基本径流叠加仍可能对下游构成威胁。当冰湖面积接近警戒面积时,应密切监测冰湖的变化,同时结合水文站基本径流情况进行早期预警。本研究提出的警戒面积指标及其确定方法为克亚吉...
对青藏高原的积雪和湖泊资源进行监测和保护是当前研究的热点问题。以青藏高原内流流域为研究区,基于Google Earth Engine(GEE)平台和Landsat 8 OLI影像,合成年际长时序卫星影像,提取研究区2013—2023年间积雪与湖泊的面积,探讨其时空变化规律,通过回归分析,建立积雪和湖泊面积与气象因子、地形因子的关系式。结果表明:1)2013至2023年,青藏高原内流区永久积雪的总面积减少了493 km2,降幅达5.98%;湖泊面积增加了1 638 km2,增幅达4.84%;2)积雪面积在11 a间呈现周期性波动,经历下降、上升、骤降与再上升,且变化幅度逐年扩大;而湖泊面积总体保持稳定,呈现缓慢的上升趋势;3)研究区内积雪面积的主要影响因素是温度、降水、高程、坡度、坡向;湖泊面积受到积雪消融的影响,但其主要影响因素是温度、降水、高程、坡度。研究结果可以更好地帮助理解气候变化对高原生态系统的影响,了解未来气候条件下积雪和湖泊的动态变化规律,并且为决策提供支持。
对青藏高原的积雪和湖泊资源进行监测和保护是当前研究的热点问题。以青藏高原内流流域为研究区,基于Google Earth Engine(GEE)平台和Landsat 8 OLI影像,合成年际长时序卫星影像,提取研究区2013—2023年间积雪与湖泊的面积,探讨其时空变化规律,通过回归分析,建立积雪和湖泊面积与气象因子、地形因子的关系式。结果表明:1)2013至2023年,青藏高原内流区永久积雪的总面积减少了493 km2,降幅达5.98%;湖泊面积增加了1 638 km2,增幅达4.84%;2)积雪面积在11 a间呈现周期性波动,经历下降、上升、骤降与再上升,且变化幅度逐年扩大;而湖泊面积总体保持稳定,呈现缓慢的上升趋势;3)研究区内积雪面积的主要影响因素是温度、降水、高程、坡度、坡向;湖泊面积受到积雪消融的影响,但其主要影响因素是温度、降水、高程、坡度。研究结果可以更好地帮助理解气候变化对高原生态系统的影响,了解未来气候条件下积雪和湖泊的动态变化规律,并且为决策提供支持。
对青藏高原的积雪和湖泊资源进行监测和保护是当前研究的热点问题。以青藏高原内流流域为研究区,基于Google Earth Engine(GEE)平台和Landsat 8 OLI影像,合成年际长时序卫星影像,提取研究区2013—2023年间积雪与湖泊的面积,探讨其时空变化规律,通过回归分析,建立积雪和湖泊面积与气象因子、地形因子的关系式。结果表明:1)2013至2023年,青藏高原内流区永久积雪的总面积减少了493 km2,降幅达5.98%;湖泊面积增加了1 638 km2,增幅达4.84%;2)积雪面积在11 a间呈现周期性波动,经历下降、上升、骤降与再上升,且变化幅度逐年扩大;而湖泊面积总体保持稳定,呈现缓慢的上升趋势;3)研究区内积雪面积的主要影响因素是温度、降水、高程、坡度、坡向;湖泊面积受到积雪消融的影响,但其主要影响因素是温度、降水、高程、坡度。研究结果可以更好地帮助理解气候变化对高原生态系统的影响,了解未来气候条件下积雪和湖泊的动态变化规律,并且为决策提供支持。
高寒内陆河流域孕育的高寒湿地对气候变化敏感,极易受外部因素干扰并发生退化。及时准确的阐述高寒湿地面积变化特征及归因分析有助于提高兼具敏感性和脆弱性的高寒湿地资源保护和管理的科学性。青海湖流域位于青藏高原东北部,是全球变化的敏感区和青藏高原脆弱生态系统典型区,也是国际重要湿地分布区之一。基于GEE云平台和2000—2023年长时间序列Landsat遥感影像,采用随机森林分类方法对青海湖流域高寒湿地进行分类,分析其面积变化特征,最后结合相关分析和随机森林特征变量重要性排序方法探讨青海湖流域高寒湿地面积变化的影响因素。结果表明:(1)2000—2023年湿地分类的平均总体精度为88.45%(85.01%—92.63%),平均kappa系数为0.83(0.82—0.91),有效区分了湖泊、沼泽湿地和沼泽化草甸等高寒湿地类型。(2)研究期内青海湖流域湿地总面积增加了604.19 km2,其中沼泽湿地面积减少了228.21 km2,湖泊与沼泽化草甸面积分别增加了203.93 km2和628.47 km2。(3)...