在全球气候变暖背景下,寒区季节冻土环境变化对陆地表面与大气之间的物质与能量交换、陆地景观格局演化的影响十分剧烈。摸清季节冻土的分布格局及其时空变化对开展寒区自然科学研究、保障生态环境和人类生产活动安全均具有重要意义。经过数十年的发展,冻土遥感技术和冻土物理学取得了长足的发展。然而,当前冻土研究成果在区域尺度下灾害风险评估与防控领域中的应用仍处于较低水平。针对冻土研究成果在应用中的短板,以青藏高原东南缘的高山峡谷区及其周边地区为研究区,重点解决地表土壤冻融循环及其水热传输过程的系统性表达,建立了适用于青藏高原高海拔冻土区的空间全分布式的冻土水热耦合过程数值模型,分析了研究区2010—2020年的冻土系统演化过程。在此基础上,构建了地表土壤冻融作用的空间参数化表征方法,提出冻融作用对土体抗剪强度的损伤系数。研究表明,青藏高原东南缘季节冻土随气温升高变化剧烈,表现出较强的空间异质性。季节冻土除了周期性冻融循环外,总体呈退化趋势,为冻融作用下岩土体结构抗剪强度的变化增加了更多不确定性。最后,利用土体抗剪强度损伤系数,从时间变化和空间分布角度揭示了地表土壤冻融作用对冻土边坡稳定性的影响程度。土体...
在全球气候变暖背景下,寒区季节冻土环境变化对陆地表面与大气之间的物质与能量交换、陆地景观格局演化的影响十分剧烈。摸清季节冻土的分布格局及其时空变化对开展寒区自然科学研究、保障生态环境和人类生产活动安全均具有重要意义。经过数十年的发展,冻土遥感技术和冻土物理学取得了长足的发展。然而,当前冻土研究成果在区域尺度下灾害风险评估与防控领域中的应用仍处于较低水平。针对冻土研究成果在应用中的短板,以青藏高原东南缘的高山峡谷区及其周边地区为研究区,重点解决地表土壤冻融循环及其水热传输过程的系统性表达,建立了适用于青藏高原高海拔冻土区的空间全分布式的冻土水热耦合过程数值模型,分析了研究区2010—2020年的冻土系统演化过程。在此基础上,构建了地表土壤冻融作用的空间参数化表征方法,提出冻融作用对土体抗剪强度的损伤系数。研究表明,青藏高原东南缘季节冻土随气温升高变化剧烈,表现出较强的空间异质性。季节冻土除了周期性冻融循环外,总体呈退化趋势,为冻融作用下岩土体结构抗剪强度的变化增加了更多不确定性。最后,利用土体抗剪强度损伤系数,从时间变化和空间分布角度揭示了地表土壤冻融作用对冻土边坡稳定性的影响程度。土体...
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61m w. e.·a-1之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61m w. e.·a-1之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3km2,是现代冰川面积的4.5倍,冰储量约为274.4km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76km2,冰储量约为0.51km3;LGM时期两冰川的平衡线高度分别为4 460~4 547m和3 569~3 694m,与现代冰川相比分别降低了535m和1 034~1 184m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89℃和5.09~6.99℃。
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3km2,是现代冰川面积的4.5倍,冰储量约为274.4km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76km2,冰储量约为0.51km3;LGM时期两冰川的平衡线高度分别为4 460~4 547m和3 569~3 694m,与现代冰川相比分别降低了535m和1 034~1 184m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89℃和5.09~6.99℃。
溃决大洪水作为短时间内水量与沉积物峰值远超正常数量级的非频发洪水,可对流域地貌、地理环境以及人类生存产生巨大影响。国内外学者已利用古洪水水文学等方法对全球一系列溃决大洪水事件进行了研究,如北半球冰盖附近和我国西南地区的溃决大洪水等,但针对像青藏高原周缘这类地势高差极大的山区溃决大洪水的研究相对较少,这极大制约了我们深入开展川藏铁路建设、雅鲁藏布江流域水电开发等重大项目的古灾害风险评估。本文对溃决大洪水的研究历史与现状进行了回顾,简述了全球典型溃决大洪水实例中有关侵蚀、沉积地貌与沉积学特征以及水力学模型分析的研究进展,重点介绍了溃决大洪水的典型地貌类型和沉积组合,以及基于二维浅水方程实现的水力学重建,最后简述藏东南地区堰塞-溃决洪水研究现状和意义,以期有助于理解溃决大洪水的发生机制与发展过程,为开展该地区的灾害研究提供参考。
溃决大洪水作为短时间内水量与沉积物峰值远超正常数量级的非频发洪水,可对流域地貌、地理环境以及人类生存产生巨大影响。国内外学者已利用古洪水水文学等方法对全球一系列溃决大洪水事件进行了研究,如北半球冰盖附近和我国西南地区的溃决大洪水等,但针对像青藏高原周缘这类地势高差极大的山区溃决大洪水的研究相对较少,这极大制约了我们深入开展川藏铁路建设、雅鲁藏布江流域水电开发等重大项目的古灾害风险评估。本文对溃决大洪水的研究历史与现状进行了回顾,简述了全球典型溃决大洪水实例中有关侵蚀、沉积地貌与沉积学特征以及水力学模型分析的研究进展,重点介绍了溃决大洪水的典型地貌类型和沉积组合,以及基于二维浅水方程实现的水力学重建,最后简述藏东南地区堰塞-溃决洪水研究现状和意义,以期有助于理解溃决大洪水的发生机制与发展过程,为开展该地区的灾害研究提供参考。
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪...
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪...