雪水比(SLR)是新增积雪深度预报中将定量降水预报转化为雪深预报所必须的重要参数。本文利用北疆地区国家气象观测站2000—2023年10月—次年3月逐日降雪量、积雪深度、温度、风速等资料,筛选北疆降雪天气事件,分析北疆不同区域内SLR变化特征,并初步探讨其与温度、降雪量级、海拔高度等气象因子的关系,研究结果表明:北疆地区SLR的平均值为12.9,高于经验值10,其变化范围跨度很大,但主要集中在2 ~ 22内变化,6~16之间出现频数最多,占比50%以上,大于32的极端值出现频率较低。北疆地区平均SLR不仅存在明显的月变化特征(12月最大,1月次之),还存在显著的空间分布差异(总体而言高海拔地区平均SLR较平原区大)。温度、降雪量、海拔高度与SLR有很好的相关性,平均温度在-15 ℃附近平均SLR存在峰值,峰值前随温度降低平均SLR明显增大,而峰值后随温度降低平均SLR突然减小;随降雪量等级的增大平均SLR呈减小趋势;随海拔高度升高平均SLR呈增加趋势。
雪水比(SLR)是新增积雪深度预报中将定量降水预报转化为雪深预报所必须的重要参数。本文利用北疆地区国家气象观测站2000—2023年10月—次年3月逐日降雪量、积雪深度、温度、风速等资料,筛选北疆降雪天气事件,分析北疆不同区域内SLR变化特征,并初步探讨其与温度、降雪量级、海拔高度等气象因子的关系,研究结果表明:北疆地区SLR的平均值为12.9,高于经验值10,其变化范围跨度很大,但主要集中在2 ~ 22内变化,6~16之间出现频数最多,占比50%以上,大于32的极端值出现频率较低。北疆地区平均SLR不仅存在明显的月变化特征(12月最大,1月次之),还存在显著的空间分布差异(总体而言高海拔地区平均SLR较平原区大)。温度、降雪量、海拔高度与SLR有很好的相关性,平均温度在-15 ℃附近平均SLR存在峰值,峰值前随温度降低平均SLR明显增大,而峰值后随温度降低平均SLR突然减小;随降雪量等级的增大平均SLR呈减小趋势;随海拔高度升高平均SLR呈增加趋势。
雪水比(SLR)是新增积雪深度预报中将定量降水预报转化为雪深预报所必须的重要参数。本文利用北疆地区国家气象观测站2000—2023年10月—次年3月逐日降雪量、积雪深度、温度、风速等资料,筛选北疆降雪天气事件,分析北疆不同区域内SLR变化特征,并初步探讨其与温度、降雪量级、海拔高度等气象因子的关系,研究结果表明:北疆地区SLR的平均值为12.9,高于经验值10,其变化范围跨度很大,但主要集中在2 ~ 22内变化,6~16之间出现频数最多,占比50%以上,大于32的极端值出现频率较低。北疆地区平均SLR不仅存在明显的月变化特征(12月最大,1月次之),还存在显著的空间分布差异(总体而言高海拔地区平均SLR较平原区大)。温度、降雪量、海拔高度与SLR有很好的相关性,平均温度在-15 ℃附近平均SLR存在峰值,峰值前随温度降低平均SLR明显增大,而峰值后随温度降低平均SLR突然减小;随降雪量等级的增大平均SLR呈减小趋势;随海拔高度升高平均SLR呈增加趋势。
利用国家级地面气象观测站、风廓线雷达、X波段双偏振相控阵雷达等多源观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析(ECMWF Reanalysis v5,ERA5)资料,总结了2023年12月13—14日山东大范围暴雪、局地大暴雪(简称“12·14”暴雪)极端性的特征和成因,并与2021年11月7日山东极端暴雪过程(简称“11·7”暴雪)对比分析了降雪量和雪水比差异的原因。结果表明:(1)典型的暖平流型天气形势是产生极端暴雪有利的环流背景条件,低层切变线和风速辐合区在鲁西北叠加,形成强烈而持久的上升运动。(2)低空急流异常偏强,降水强度不仅与低空急流的强度有关,而且与其厚度有关。当3.0 km高度保持低空急流的强度时,10 m·s-1风速到达的高度越低,降雪强度越大。(3)700 hPa比湿超过4 g·kg-1、850 hPa比湿超过3 g·kg-1的持续时间均长达10 h以上,为极端暴雪过程提供了充足的...
利用常规观测、积雪深度逐时加密观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析(ECMWF Reanalysis v5,ERA5)资料,对2023年12月13—15日山东一次极端暴雪天气过程积雪特征及其成因进行分析,得到以下结论:(1)此次过程是一次江淮气旋暴雪天气过程,具有持续时间长、降水相态复杂、基础温度低、降温幅度大和积雪深度厚等特征。(2)最大小时新增积雪深度可达8 cm;过程平均雪水比为0.7 cm·mm-1,呈“西大东小”的分布特征。(3)有积雪的站近地面温度从开始降雪到地面产生积雪,气温和雪面温度均呈下降趋势,0 cm地温在降雪前期降温明显,积雪形成后地温不再明显变化。无积雪的站在整个降雪时段内近地面温度可分为4种情况。(4)雪水比随气温变化最明显;积雪形成之后地温对雪水比大小影响不大;当雪水比小于0.75 cm·mm-1时,雪水比随雪面温度降低而增大,当雪水比大于0.76 cm·mm-1后,...
利用常规观测、积雪深度逐时加密观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析(ECMWF Reanalysis v5,ERA5)资料,对2023年12月13—15日山东一次极端暴雪天气过程积雪特征及其成因进行分析,得到以下结论:(1)此次过程是一次江淮气旋暴雪天气过程,具有持续时间长、降水相态复杂、基础温度低、降温幅度大和积雪深度厚等特征。(2)最大小时新增积雪深度可达8 cm;过程平均雪水比为0.7 cm·mm-1,呈“西大东小”的分布特征。(3)有积雪的站近地面温度从开始降雪到地面产生积雪,气温和雪面温度均呈下降趋势,0 cm地温在降雪前期降温明显,积雪形成后地温不再明显变化。无积雪的站在整个降雪时段内近地面温度可分为4种情况。(4)雪水比随气温变化最明显;积雪形成之后地温对雪水比大小影响不大;当雪水比小于0.75 cm·mm-1时,雪水比随雪面温度降低而增大,当雪水比大于0.76 cm·mm-1后,...
利用国家级地面气象观测站、风廓线雷达、X波段双偏振相控阵雷达等多源观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析(ECMWF Reanalysis v5,ERA5)资料,总结了2023年12月13—14日山东大范围暴雪、局地大暴雪(简称“12·14”暴雪)极端性的特征和成因,并与2021年11月7日山东极端暴雪过程(简称“11·7”暴雪)对比分析了降雪量和雪水比差异的原因。结果表明:(1)典型的暖平流型天气形势是产生极端暴雪有利的环流背景条件,低层切变线和风速辐合区在鲁西北叠加,形成强烈而持久的上升运动。(2)低空急流异常偏强,降水强度不仅与低空急流的强度有关,而且与其厚度有关。当3.0 km高度保持低空急流的强度时,10 m·s-1风速到达的高度越低,降雪强度越大。(3)700 hPa比湿超过4 g·kg-1、850 hPa比湿超过3 g·kg-1的持续时间均长达10 h以上,为极端暴雪过程提供了充足的...
本文采用ECMWF (European Centre for Medium-Range Weather Forecasts)细网格和NCEP (National Centers for Environmental Prediction)模式数据、NCEP 1°×1°再分析资料、降雪加密观测和常规资料,对2022年初的5次降雪过程进行对比分析,发现5次降雪过程均为雨转雪过程,且持续时间相对较短,平原为雨夹雪或小雪到中雪,山区中到大雪,局部暴雪,数值模式预报的积雪深度与实况相差甚远;大尺度环流形势为500 hPa中低纬南支槽或弱波动配合700 hPa上的暖湿气流和中低层冷空气,造成边界层浅薄的冷垫上温度骤降而在短时间内形成降雪;相较于平原地区,高山区上空温度层结与最大上升运动中心的配置,有利于降雪粒子较长时间维持在有利于枝状雪花的形成区域,且高山区云底云水含量显著偏低、整层温度足够低,故高山区更利于暴雪的形成。
本文采用ECMWF (European Centre for Medium-Range Weather Forecasts)细网格和NCEP (National Centers for Environmental Prediction)模式数据、NCEP 1°×1°再分析资料、降雪加密观测和常规资料,对2022年初的5次降雪过程进行对比分析,发现5次降雪过程均为雨转雪过程,且持续时间相对较短,平原为雨夹雪或小雪到中雪,山区中到大雪,局部暴雪,数值模式预报的积雪深度与实况相差甚远;大尺度环流形势为500 hPa中低纬南支槽或弱波动配合700 hPa上的暖湿气流和中低层冷空气,造成边界层浅薄的冷垫上温度骤降而在短时间内形成降雪;相较于平原地区,高山区上空温度层结与最大上升运动中心的配置,有利于降雪粒子较长时间维持在有利于枝状雪花的形成区域,且高山区云底云水含量显著偏低、整层温度足够低,故高山区更利于暴雪的形成。
利用地面气象观测站资料、加密地面观测资料和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)第五代大气再分析数据(ECMWF Reanalysis v5,ERA5;分辨率为0.25°×0.25°)逐小时资料,对山东2021年11月6—8日极端暴雪过程雪水比影响因子进行研究。结果显示:此次暴雪过程平均雪水比分布总体呈“北大南小、西大东小”的分布特征,降雪初期产生的雪水比小,降雪中后期产生的雪水比大;温度偏高、云内液态水含量较高的地区雪水比较小,温度偏低、云内液态水含量较低的地区雪水比较大;雪水比与地面气温、地表温度呈负相关,地面气温与雪水比的相关性最大,积雪产生之后地表温度与雪水比变化无明显相关。