共检索到 37

高寒植被生长和分布与其潜在水分来源和水分利用特征密切相关。受气候变化影响,近年来长江源区植被覆盖迅速提升,大量高寒草甸演化为沼泽草甸,对区域生态水文过程产生了深远影响。基于此,采集2021年长江源多年冻土区流域典型高寒草甸和沼泽草甸坡面上坡、中坡、下坡的土壤、植物样品,获取氢氧稳定同位素监测数据,探究高寒草甸和沼泽草甸的水分利用策略差异。结果表明,叶片水δ18O变幅最大,降水次之,土壤水、根系水变幅最小,叶片水氢氧稳定同位素受蒸发分馏效应影响最大,此外,植物水线的斜率和截距均远小于地区大气降水线,也反映出蒸腾作用下同位素富集现象;相比沼泽草甸,高寒草甸叶片水更加富集δ18O,高寒草甸蒸腾作用更强烈;高寒草甸和沼泽草甸对不同深度土壤水的利用策略较为接近,无显著性差异,其中,0~5 cm深度土壤水的贡献比例最大,均超过22%;坡位因素对高寒草甸和沼泽草甸不同深度土壤水的利用策略无显著性影响,其中,不同坡位草甸0~5 cm土壤水的用水贡献均为最大,可见浅层土壤水为植物根系水的主要来源,当浅层土壤水无法满足植物需水时,植物根系会吸收较深层的土壤水。

期刊论文 2025-03-20 DOI: 10.20040/j.cnki.1000-7709.2025.20240959

高寒植被生长和分布与其潜在水分来源和水分利用特征密切相关。受气候变化影响,近年来长江源区植被覆盖迅速提升,大量高寒草甸演化为沼泽草甸,对区域生态水文过程产生了深远影响。基于此,采集2021年长江源多年冻土区流域典型高寒草甸和沼泽草甸坡面上坡、中坡、下坡的土壤、植物样品,获取氢氧稳定同位素监测数据,探究高寒草甸和沼泽草甸的水分利用策略差异。结果表明,叶片水δ18O变幅最大,降水次之,土壤水、根系水变幅最小,叶片水氢氧稳定同位素受蒸发分馏效应影响最大,此外,植物水线的斜率和截距均远小于地区大气降水线,也反映出蒸腾作用下同位素富集现象;相比沼泽草甸,高寒草甸叶片水更加富集δ18O,高寒草甸蒸腾作用更强烈;高寒草甸和沼泽草甸对不同深度土壤水的利用策略较为接近,无显著性差异,其中,0~5 cm深度土壤水的贡献比例最大,均超过22%;坡位因素对高寒草甸和沼泽草甸不同深度土壤水的利用策略无显著性影响,其中,不同坡位草甸0~5 cm土壤水的用水贡献均为最大,可见浅层土壤水为植物根系水的主要来源,当浅层土壤水无法满足植物需水时,植物根系会吸收较深层的土壤水。

期刊论文 2025-03-20 DOI: 10.20040/j.cnki.1000-7709.2025.20240959

本文选取沱沱河气象站1961—2022年气温、2004—2022浅层地温、2016—2022深层地温资料以及2022年人工冻土观测数据代表长江源地区气象资料,采用气候倾向率及SPSS软件进行相关性分析。结果表明:长江源地区平均气温以0.37℃/10 a的趋势增加;0~20 cm地温均呈波动上升趋势,0 cm地温最大值出现在2006年(2.7℃),最小值出现在2014年(0.2℃);5~20 cm地温最大值均出现在2016年,最小值均出现在2014年;40~320 cm地温略呈不明显下降趋势,最大值均出现在2017年,最小值均出现在2019年。深层地温与浅层地温最小值出现时间相差5 a。长江源地区10月开始出现冻土,至次年5月冻土深度达到最大值,7—9月无冻土出现。冻土深度春季>冬季>秋季>夏季。长江源地区冻土与0 cm、5 cm、10 cm、15 cm、20 cm、40 cm、160 cm、320 cm地温的相关系数通过了0.01的显著性检验。80 cm未通过显著性检验,表明80 cm地温对冻土的影响不明显。

期刊论文 2024-10-11

长江源地区的冰川变化揭示了青藏高原气候变化趋势。冰下地形探测作为冰川发育和运动过程研究的基础,对长江地区水土保持和淡水资源储量研究具有指导意义。长江科学院在长达10 a的江源科考基础上,分别于2022年、2023年采用探地雷达(GPR)技术对长江正源沱沱河发源地格拉丹东主峰的冰川厚度进行精准探测,并对查旦湿地冻土厚度上限进行了探测研究。结合多种冰川和冻土地质模型的GPR波场模拟结果,提高了GPR技术在长江源地区冰川和冻土探测的有效性和精准度。探测结果表明,格拉丹东主峰冰川厚度和查旦湿地冻土厚度上限均有不同程度降低,冰川厚度和冻土厚度上限观测是一个常年积累的结果,后续仍需持续进行观测,积累更多数据,分析变化趋势,以估算探测区域内冰储量,研究气候变化对冰川的影响效果。

期刊论文 2024-03-11

溶解性有机碳(dissolved organic carbon,DOC)在全球碳循环过程中起着重要的作用。目前关于泛北极多年冻土区DOC的研究较多,青藏高原多年冻土区DOC的研究较少。为探讨青藏高原DOC的时空动态、来源,以及对气候变化和多年冻土退化的响应及其影响因素,以位于青藏高原长江源区内8个流域(直门达、沱沱河、雁石坪、风火山1~5)为研究区,通过对河流DOC观测、采样和分析,DOC输出通量计算,结合河流中δ13C-DOC同位素的特征、流域水文特征、植被覆盖率、冻土覆盖率等观测数据,分析河流DOC输出的季节性变化规律和来源。结果表明:长江源多年冻土区河流DOC浓度全年较低,平均浓度在1.91~3.69 mg·L-1之间,年内不同季节间变化率较小,上游DOC浓度大于下游DOC浓度。河流DOC的输出主要集中在夏、秋两季完全融化期,随径流量的增加而显著增加,而冬、春两季输出较少,DOC通量与径流量之间的相关系数达到0.92,与径流量的变化趋势一致。直门达水文站和风火山流域DOC年输出量分别为42 539.67 t和137.33 t,完全融化期...

期刊论文 2023-07-28

溶解性有机碳(dissolved organic carbon,DOC)在全球碳循环过程中起着重要的作用。目前关于泛北极多年冻土区DOC的研究较多,青藏高原多年冻土区DOC的研究较少。为探讨青藏高原DOC的时空动态、来源,以及对气候变化和多年冻土退化的响应及其影响因素,以位于青藏高原长江源区内8个流域(直门达、沱沱河、雁石坪、风火山1~5)为研究区,通过对河流DOC观测、采样和分析,DOC输出通量计算,结合河流中δ13C-DOC同位素的特征、流域水文特征、植被覆盖率、冻土覆盖率等观测数据,分析河流DOC输出的季节性变化规律和来源。结果表明:长江源多年冻土区河流DOC浓度全年较低,平均浓度在1.91~3.69 mg·L-1之间,年内不同季节间变化率较小,上游DOC浓度大于下游DOC浓度。河流DOC的输出主要集中在夏、秋两季完全融化期,随径流量的增加而显著增加,而冬、春两季输出较少,DOC通量与径流量之间的相关系数达到0.92,与径流量的变化趋势一致。直门达水文站和风火山流域DOC年输出量分别为42 539.67 t和137.33 t,完全融化期...

期刊论文 2023-07-28

沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1 200m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4 650~4 680m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98)m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3m,多年冻土相对较薄,平均厚度为15.0m;多年冻土下限深度和多年冻土的厚度最大为75.0m和72.7m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0m深度以上范围内,同时也发现...

期刊论文 2022-03-25

沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1 200m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4 650~4 680m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98)m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3m,多年冻土相对较薄,平均厚度为15.0m;多年冻土下限深度和多年冻土的厚度最大为75.0m和72.7m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0m深度以上范围内,同时也发现...

期刊论文 2022-03-25

识别多年冻土区坡面土壤水分迁移过程是认识寒区产汇流过程的关键。同位素技术可在不破坏土壤原始结构情况下,最大限度获取水文过程信息。基于长江源多年冻土流域活动层融化期(融化深度100 cm左右)采集的典型坡面土壤水、地下水、降水和河水样品,分析不同水体的稳定同位素特征,探索土壤水分迁移规律。结果表明:研究区土壤水δ18O为-14.58‰~-1.58‰,均值为-8.25‰;δD为-103.88‰~-14.99‰,均值为-59.94‰;土壤水、河水和地下水同位素点均分布于局地大气降水线附近,表明降水为上述水体的主要来源;蒸发线的斜率和截距均小于局地大气降水线,其中地下水线(GWLE)的斜率最低,且地下水呈重稳定同位素富集现象,说明地下水受蒸发和混合效应的影响,在迁移转换过程中经历了一定程度的蒸发;根系层结构的复杂性使其土壤水的同位素值变幅最大,也存在重稳定同位素富集现象,其较低的氘盈余(d-excess)表明根系层经历了强烈的蒸发分馏过程;研究期除河水外其他水体随时间变幅较大;降水对于土壤水同位素的影响较小,而地下水和20~50 cm土壤水对河水的贡献占主导地位。本研究对...

期刊论文 2022-03-18

识别多年冻土区坡面土壤水分迁移过程是认识寒区产汇流过程的关键。同位素技术可在不破坏土壤原始结构情况下,最大限度获取水文过程信息。基于长江源多年冻土流域活动层融化期(融化深度100 cm左右)采集的典型坡面土壤水、地下水、降水和河水样品,分析不同水体的稳定同位素特征,探索土壤水分迁移规律。结果表明:研究区土壤水δ18O为-14.58‰~-1.58‰,均值为-8.25‰;δD为-103.88‰~-14.99‰,均值为-59.94‰;土壤水、河水和地下水同位素点均分布于局地大气降水线附近,表明降水为上述水体的主要来源;蒸发线的斜率和截距均小于局地大气降水线,其中地下水线(GWLE)的斜率最低,且地下水呈重稳定同位素富集现象,说明地下水受蒸发和混合效应的影响,在迁移转换过程中经历了一定程度的蒸发;根系层结构的复杂性使其土壤水的同位素值变幅最大,也存在重稳定同位素富集现象,其较低的氘盈余(d-excess)表明根系层经历了强烈的蒸发分馏过程;研究期除河水外其他水体随时间变幅较大;降水对于土壤水同位素的影响较小,而地下水和20~50 cm土壤水对河水的贡献占主导地位。本研究对...

期刊论文 2022-03-18
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共37条,4页