明确山区季节性积雪的时空变化对山区水资源管理、水文过程和生态保护至关重要。高时空分辨率的积雪面积数据是监测山区积雪变化的重要手段,然而,由于现有积雪面积遥感产品受传感器性能的限制,短时间和高空间分辨率无法兼得,难以准确捕捉高度异质的山区斑状积雪的细微变化。为监测积雪面积的时空动态变化,本研究选取祁连山北麓山区为研究对象,利用MODIS和Landsat 8两种卫星数据,构建了基于U-Net++网络多源数据融合获取高时空分辨积雪面积的方法,并使用高分辨率的Landsat数据和Sentinel数据对新发展的方法进行验证,与融合高时空反射率数据间接重建积雪面积的STARFM和DMNet时空融合算法从不同角度进行对比验证。结果表明:(1)基于U-Net++网络的30 m空间分辨率积雪面积重建算法有效恢复了山区积雪的细节特征。算法精度较高,总体精度为90.4%,制图精度为89.9%,用户精度为88.4%,Kappa系数为0.80。重建结果鲁棒性较好,在不同积雪覆盖度、不同地表下垫面和不同云量的条件下,总体精度相差<3%,且均高于88%。(2)相较于STARFM和DMNet时空融合间接重建积雪...
明确山区季节性积雪的时空变化对山区水资源管理、水文过程和生态保护至关重要。高时空分辨率的积雪面积数据是监测山区积雪变化的重要手段,然而,由于现有积雪面积遥感产品受传感器性能的限制,短时间和高空间分辨率无法兼得,难以准确捕捉高度异质的山区斑状积雪的细微变化。为监测积雪面积的时空动态变化,本研究选取祁连山北麓山区为研究对象,利用MODIS和Landsat 8两种卫星数据,构建了基于U-Net++网络多源数据融合获取高时空分辨积雪面积的方法,并使用高分辨率的Landsat数据和Sentinel数据对新发展的方法进行验证,与融合高时空反射率数据间接重建积雪面积的STARFM和DMNet时空融合算法从不同角度进行对比验证。结果表明:(1)基于U-Net++网络的30 m空间分辨率积雪面积重建算法有效恢复了山区积雪的细节特征。算法精度较高,总体精度为90.4%,制图精度为89.9%,用户精度为88.4%,Kappa系数为0.80。重建结果鲁棒性较好,在不同积雪覆盖度、不同地表下垫面和不同云量的条件下,总体精度相差<3%,且均高于88%。(2)相较于STARFM和DMNet时空融合间接重建积雪...
明确山区季节性积雪的时空变化对山区水资源管理、水文过程和生态保护至关重要。高时空分辨率的积雪面积数据是监测山区积雪变化的重要手段,然而,由于现有积雪面积遥感产品受传感器性能的限制,短时间和高空间分辨率无法兼得,难以准确捕捉高度异质的山区斑状积雪的细微变化。为监测积雪面积的时空动态变化,本研究选取祁连山北麓山区为研究对象,利用MODIS和Landsat 8两种卫星数据,构建了基于U-Net++网络多源数据融合获取高时空分辨积雪面积的方法,并使用高分辨率的Landsat数据和Sentinel数据对新发展的方法进行验证,与融合高时空反射率数据间接重建积雪面积的STARFM和DMNet时空融合算法从不同角度进行对比验证。结果表明:(1)基于U-Net++网络的30 m空间分辨率积雪面积重建算法有效恢复了山区积雪的细节特征。算法精度较高,总体精度为90.4%,制图精度为89.9%,用户精度为88.4%,Kappa系数为0.80。重建结果鲁棒性较好,在不同积雪覆盖度、不同地表下垫面和不同云量的条件下,总体精度相差<3%,且均高于88%。(2)相较于STARFM和DMNet时空融合间接重建积雪...
明确山区季节性积雪的时空变化对山区水资源管理、水文过程和生态保护至关重要。高时空分辨率的积雪面积数据是监测山区积雪变化的重要手段,然而,由于现有积雪面积遥感产品受传感器性能的限制,短时间和高空间分辨率无法兼得,难以准确捕捉高度异质的山区斑状积雪的细微变化。为监测积雪面积的时空动态变化,本研究选取祁连山北麓山区为研究对象,利用MODIS和Landsat 8两种卫星数据,构建了基于U-Net++网络多源数据融合获取高时空分辨积雪面积的方法,并使用高分辨率的Landsat数据和Sentinel数据对新发展的方法进行验证,与融合高时空反射率数据间接重建积雪面积的STARFM和DMNet时空融合算法从不同角度进行对比验证。结果表明:(1)基于U-Net++网络的30 m空间分辨率积雪面积重建算法有效恢复了山区积雪的细节特征。算法精度较高,总体精度为90.4%,制图精度为89.9%,用户精度为88.4%,Kappa系数为0.80。重建结果鲁棒性较好,在不同积雪覆盖度、不同地表下垫面和不同云量的条件下,总体精度相差<3%,且均高于88%。(2)相较于STARFM和DMNet时空融合间接重建积雪...
明确山区季节性积雪的时空变化对山区水资源管理、水文过程和生态保护至关重要。高时空分辨率的积雪面积数据是监测山区积雪变化的重要手段,然而,由于现有积雪面积遥感产品受传感器性能的限制,短时间和高空间分辨率无法兼得,难以准确捕捉高度异质的山区斑状积雪的细微变化。为监测积雪面积的时空动态变化,本研究选取祁连山北麓山区为研究对象,利用MODIS和Landsat 8两种卫星数据,构建了基于U-Net++网络多源数据融合获取高时空分辨积雪面积的方法,并使用高分辨率的Landsat数据和Sentinel数据对新发展的方法进行验证,与融合高时空反射率数据间接重建积雪面积的STARFM和DMNet时空融合算法从不同角度进行对比验证。结果表明:(1)基于U-Net++网络的30 m空间分辨率积雪面积重建算法有效恢复了山区积雪的细节特征。算法精度较高,总体精度为90.4%,制图精度为89.9%,用户精度为88.4%,Kappa系数为0.80。重建结果鲁棒性较好,在不同积雪覆盖度、不同地表下垫面和不同云量的条件下,总体精度相差<3%,且均高于88%。(2)相较于STARFM和DMNet时空融合间接重建积雪...
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。
针对金沙江上游气象观测站点稀疏以及高寒山区复杂水文过程导致的径流模拟难题,提出一种基于融合ERA5-Land再分析数据与实测降水数据的VIC模型驱动方案。基于模型模拟结果,对比分析遥感监测以及模型输出的积雪覆盖率,并讨论了流域融雪径流变化特征以及气温对融雪径流的影响。结果表明:仅采用站点插值数据构建的VIC模型很难反映流域真实的径流状况,而采用融合降水资料将小时径流模拟的确定性系数在率定期和验证期分别提高至0.80和0.74,相对误差显著降低至20%以内。模型输出积雪覆盖与遥感数据监测的积雪覆盖呈现良好的一致性,流域融雪径流年际变化稳定,年内差异较大,呈现双峰特征,春季融雪径流与气温有较大的相关性。该结果可为高寒区径流模拟及洪旱灾害监测与预报提供参考。