为了深入研究多年冻土地区铁路桥梁桩基础设计,基于多年冻土地区铁路桥梁桩基础承载力计算理论,分析实际工程中桩基础与多年冻土的相对位置不同情况下设计注意事项。一般冻土层厚度与桩基础有4种相对位置关系,表层季节融化层厚度决定桥梁承台的埋置原则。当多年冻土天然上限较高时,承台底埋置于人为上限之下≮0.25m,桩周阻力根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供;当天然上限较低时,为了降低承台基坑开挖对地下多年冻土的扰动及减少工程投资,承台底面应上抬至地面之上≮0.3m,桩周阻力亦根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供,这种情况下,季节融化层夏季融沉产生的负摩阻力对桩长的影响不可忽略。另外,多年冻土地区桥梁桩基设计需要采取一定措施如设置永久钢护筒、涂抹沥青渣油、回填卵砾石土等方法来降低后期病害。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
准确揭示多年冻土区碳源汇特征及其演化趋势对降低我国陆地生态系统碳源汇评估中的不确定性、实现“碳中和”目标具有重要意义。自国家重点研发计划项目启动以来,研究团队阐明了多年冻土区碳氮磷循环关键参数的空间格局和驱动因素,构建了多年冻土区首个全生态系统增温实验平台,解析了碳氮循环关键过程对气候变暖等全球变化要素的响应机制,揭示了热融湖塘甲烷(CH4)排放、可溶性有机质降解以及微生物分布特征。项目取得的阶段性成果有望为实现我国“碳中和”战略目标提供科技支撑。
受全球气候变暖的影响,多年冻土融化有愈演愈烈的趋势。多年冻土融化是由全球气候变暖引起的,并在一定程度上加快了全球变暖的进程,对生态环境和人类生活造成巨大影响。基于此,从全球变暖引发的各种极端天气以及多年冻土融化的各种现象出发,分析多年冻土融化对气候变化与人类社会的影响,以期为相关人员提供参考。
近年来青藏高原多年冻土地区降雨量呈增大趋势,导致活动层沿多年冻土层滑脱,诱发的冻土浅层滑坡灾害严重影响区域生态环境和人类活动。冻土浅层滑坡失稳是渗流、温度和应力复杂耦合的过程,明确降雨条件下多年冻土斜坡水热力响应机制,揭示降雨诱发冻土浅层滑坡失稳的机理十分关键。基于冻土水热力耦合数值模拟方法,建立了仅施加气温变化的模型一和在气温变化基础上施加强度为9 mm·d-1、持续降雨18 d的模型二,探讨了低强度、长时间降雨对多年冻土斜坡水热力演化的影响。结果表明:夏季雨水入渗对斜坡浅层温度场产生扰动,进而影响土体冻融过程,活动层以下有形成富水层的可能。雨水入渗导致融土饱和度大幅增加,水分渗流方向由竖直向下逐渐转变为顺坡方向。极限状态下斜坡位移分布在活动层,符合冻土浅层滑坡变形特征,降雨入渗数天后活动层位移有显著增大的趋势,最大位移所在位置向坡脚转移。降雨对斜坡稳定性影响显著,雨水入渗对活动层水热力产生持续影响,斜坡安全系数最小值出现明显滞后。研究结果为青藏地区冻土浅层滑坡灾害防治提供了科学指导。
为分析冻土融化、爆破振动及降雨因素对高寒地区露天矿山边坡稳定性的影响,采用合成孔径边坡雷达监测及无人机航测技术,对某矿山边坡进行连续不间断监测,研究冻土融化、爆破振动及降雨因素影响下边坡的变形规律。研究结果表明:受冻土融化影响,区域变形均发生在白天温度较高时间段,夜晚基本无变形累积;爆破振动对作业附近松散岩体影响较大,1天内变形基本出现在爆破振动作业后的2~3 h内,其余时间基本无累积,变形曲线呈阶梯状增长;降雨后采场坡顶表土层出现多个分散分布的沉降变形区域,变形曲线没有明显规律。研究结果验证合成孔径雷达监测技术的有效性,为分析采场变形诱因提供参考。
人工建植作为恢复“黑土滩”型退化草地的一项重要举措已被广泛应用,目前已有研究主要评估了人工建植对植被特征与土壤固碳能力的影响,但其对土壤冻融过程的影响鲜有研究。本研究以青藏高原东北缘祁连山中西段疏勒河源多年冻土区“黑土滩”型退化草地及人工建植区为研究对象,对“黑土滩”和人工建植区土壤温度、含水量、盐分实测数据进行分析。结果表明:1)冬季人工建植区较“黑土滩”土壤温度更高且受气温波动小,土壤含水量整体略高于“黑土滩”且受降水影响小,土壤盐分含量较“黑土滩”有所降低,其中夏、秋两季最明显,符合人工建植区较“黑土滩”有更好的保温效果和抗盐碱化作用的预期。2)人工建植后的土壤冻结日延长,融化日和冻融日缩短,表明人工建植能有效降低“黑土滩”土壤冻融过程的发生频率,进而减弱冻融侵蚀。研究结果对寒区生态环境的修复与保护有一定的指示作用。
为了确保春季播种安全,有必要开展播种期地温的监测和冻土融化深度预报业务。利用新疆农八师冻土气象观测资料,运用相关系数和线性回归方法,分析冻土特征及融化过程中地温变化、深度变化规律,建立春季冻土融化预报模型。结果表明,新疆农八师垦区稳定冻土期在11月中旬至翌年3月下旬,冻土最大深度呈逐年变浅趋势,倾向率为-5.4 cm/10 a;冻土结冻日期推后,倾向率为2.0 d/10 a;冻土化通日期提前,倾向率为-1.5 d/10 a。冻土融化期在3月中旬至4月上旬,冻土融化速率在3.1~4.0 cm/d之间。春季地温与平均气温、冻土融化深度与正积温具有显著的正相关,以此建立了相应的预报模型。10 cm地温预报模型历史回代准确率在96%以上,冻土融化深度预报模型历史回代准确率在94%以上。通过模型可以开展春季地温和土壤融化预报业务。
为了开展地温监测和冻土融化深度预报业务,利用辽宁西部气象观测资料,运用相关系数和线性回归等方法,分析冻土变化特征、冻土融化过程,以及气象要素对冻土深度变化的影响,并建立其地温与气温、冻土融化过程与正积温相关模型。结果表明,辽宁西部稳定冻土期在11月中旬至翌年3月下旬,冻土最大深度呈逐年变浅趋势,倾向率为-5.4 cm/10 a;结冻日期推后,倾向率为2.0 d/10 a;化通日期提前,倾向率为-1.5 d/10 a;冻土融化期在3月中旬至4月上旬,冻土融化速率在3.1~4.0 cm/d。冻土最大深度与气温、地面温度及降水量显著相关。11月至翌年2月气温每升高1℃冻土最大深度变浅5.7 cm。气温与地温、正积温与冻土融化深度具有显著的线性关系;其中,气温与10 cm地温线性方程历史回代拟合率在96%以上;正积温与冻土融化深度线性方程历史回代拟合率在94%以上。线性方程可作为模型预测预报春季地温、冻土融化深度。
多年冻土区隧道在施工过程中围岩受施工热源的影响形成融化圈,在季节性冻融作用下,会造成衬砌表面开裂、剥落、覆冰等冻害。因此,减少施工对冻土原始地温场的扰动是寒区隧道施工的重要控制因素之一。本文以青藏高原风火山隧道为背景,结合实际施工工况、环境温度及地温数据,基于传热学理论,利用数值仿真开展隧道开挖暴露时间、初支施作时机、贯通后有无保温层、气候变暖等因素下隧道围岩融化圈变化规律研究。结果表明:与无支护阶段相比,有初期支护隧道围岩融化圈深度在30 d内减少了25.6%,融化圈发生时间推迟了6 d左右,及时施作初支可有效减小隧道融化范围;隧道围岩融化圈呈月牙形分布,内侧线扩大速率大于外侧线减小速率,施工引起的热扰动对隧道围岩的回冻有显著影响。考虑气候变暖因素,提出铺设5 cm厚保温层能有效抑制围岩出现季节性冻融圈。