基于长期、连续的地温观测数据,对位于共和至玉树高等级公路沿线、平均海拔为4 260 m且处于高温冻土区的片块石路基温度、热状态、冻融循环过程和冻土人为上限及变化速率等进行了分析,研究了沥青混凝土和水泥混凝土路面对片块石路基下伏多年冻土的影响,以期对其适用性进行评价。研究发现,沥青混凝土路面的铺设使路基吸收了较多的热量,促使下伏多年冻土升温,导致多年冻土快速退化。观测期内,高温冻土地区沥青混凝土路面下片块石路基中心冻土退化速率为33.5 cm/a,几乎是天然地基的5倍。而且路基阴阳坡效应严重,阳坡路肩冻土退化速率为33.0 cm/a,明显大于阴坡路肩(22.0 cm/a)。与沥青混凝土路面相比,水泥混凝土路面较高的热反射率、较小的热辐射吸收率,有利于抬升冻土上限或减缓冻土退化速率。但在观测期间,发现处于高温冻土区的高等级公路片块石路基在沥青混凝土路面下融化盘面积增长速率为12.24 m2/a,而在水泥混凝土路面下为9.28 m2/a,即融化盘面积以不同程度的速率始终在增大。因此,单纯的片块石层的存在和路面类型的改变,并未彻底解决高温冻土区高等级...
在青藏公路高温多年冻土区高路堤路段,由于阴阳坡面的地温差异造成路基边坡阳坡面的融化盘较路基中心要深,比阴面更深,在车辆荷载的作用下路基左侧(阳面)伴随着不均匀沉陷,出现了严重的纵向裂缝等路基病害。对其病害的特征及形成机理进行了系统的阐述,并基于对青藏公路热棒路基及遮阳板路基地温观测数据的分析,提出这两种工程措施能有效治理上述病害。
针对青藏公路路基下发育多年冻土融化盘的实际情况,选择两种模型,应用ABAQUS有限元分析软件,对冻土路基从修筑到开放交通过程中的路基路面位移及应力进行了分析.结果表明:冻土路基以融沉为主的变形,一般情况下以路中心下最大,变形呈凹形;当路基下融化盘偏移时,最大变形位置随之偏移;路面层底拉应力最大,对融沉变形反映敏感;路面顶部压应力最大值出现在轴载作用位置,面层应力对轴载反映敏感.计算模型断面尺寸、路基填料、路面结构等对青藏公路具有代表性,在3.6 m路基总高度条件下,无论路基下融化盘偏移与否,融化盘厚达0.5 m时路基顶部(路面层底)拉应力即达基层抗拉强度,显示路基融沉变形可能导致路基失稳及路面破坏,此时路基高度即达最大值.
本文明确的论述了在大、小兴安岭和呼伦贝尔林区存在多年的冻土地区及冻土对地基的重大危害。并全面的分析工程上具体实例。对解决多年冻土地区,出现破坏性冻裂和冻土地区的地基处理起到积极作用。
在青藏高原多年冻土区,沥青路面的辅设改变了地表与大气之间的热交换关系,尤其是路面水分蒸发量大量减少,致使路面温度突然升高,多年冻土层内能量积蓄增多,地温升高,上限逐年下降。最终在路基下多年冻土顶板上形成融化夹层,并随时间延长,多年冻土顶板下降,融化夹层逐年扩大,多年冻土地下冰融化,路面破坏,严重影响道路运营