积雪是对气候变化响应最敏感的自然要素之一,对地表的辐射平衡和水循环有着重要影响,全球积雪覆盖面积约为46×10~6 km2,且98%分布在北半球,由于积雪具有独特的辐射(高表面反照率)和热(低热传导率)特性,其变化对陆地和大气之间的能量平衡和水循环过程具有重要的影响,在全球变暖背景下,近几十年来北半球积雪覆盖面积减少趋势明显,尤其春季最明显,基于观测数据评估CMIP6模式数据对于积雪覆盖面积的模拟能力,应用多模式平均评估未来时期积雪覆盖度的变化情况。本文以美国国家海洋和大气管理局/美国国家气候数据中心(NOAA/NCDC)的积雪产品为参考数据,采用泰勒技巧评分、相对偏差等方法,对国际耦合模式比较计划第六阶段(CMIP6)发布的1982-2014年北半球春季积雪覆盖度(SCF)数据进行评估,并选取排名前三的模式的集合平均预估未来(2015-2099年)不同排放情景下SCF的时空变化特征。结果表明:历史时期(1982-2014年)从整体上看,积雪覆盖度呈现出高纬高,低纬低,青藏高原和亚洲东部等高海拔地区较同纬地区高的特点,北半球的积雪覆盖度呈减少趋势地区为68.37%...
积雪是对气候变化响应最敏感的自然要素之一,对地表的辐射平衡和水循环有着重要影响,全球积雪覆盖面积约为46×10~6 km2,且98%分布在北半球,由于积雪具有独特的辐射(高表面反照率)和热(低热传导率)特性,其变化对陆地和大气之间的能量平衡和水循环过程具有重要的影响,在全球变暖背景下,近几十年来北半球积雪覆盖面积减少趋势明显,尤其春季最明显,基于观测数据评估CMIP6模式数据对于积雪覆盖面积的模拟能力,应用多模式平均评估未来时期积雪覆盖度的变化情况。本文以美国国家海洋和大气管理局/美国国家气候数据中心(NOAA/NCDC)的积雪产品为参考数据,采用泰勒技巧评分、相对偏差等方法,对国际耦合模式比较计划第六阶段(CMIP6)发布的1982-2014年北半球春季积雪覆盖度(SCF)数据进行评估,并选取排名前三的模式的集合平均预估未来(2015-2099年)不同排放情景下SCF的时空变化特征。结果表明:历史时期(1982-2014年)从整体上看,积雪覆盖度呈现出高纬高,低纬低,青藏高原和亚洲东部等高海拔地区较同纬地区高的特点,北半球的积雪覆盖度呈减少趋势地区为68.37%...
积雪深度(雪深)是流域水量平衡、融雪径流模拟等模型的重要输入参数,被动微波雪深遥感产品被广泛用于雪深监测。然而,由于山区积雪时空异质性强,这些空间分辨率较粗的雪深产品受到极大限制。本研究基于MODIS积雪覆盖度数据,根据经验融合规则以及积雪衰退曲线对“中国雪深长时间序列数据集”的两套雪深产品(由SMMR、SSMI和SSMI/S反演的称为Che_SSMI/S产品;由AMSR-2反演称为Che_AMSR2产品)进行空间降尺度,最终获得青藏高原500 m降尺度雪深数据(Che_SSMI/S_NSD和Che_AMSR2_NSD)。利用6景Landsat-8影像对两套降尺度雪深数据进行对比分析,结果发现两套降尺度数据与Landsat-8影像积雪空间分布吻合度均较高。与29个气象站点雪深数据相比,Che_AMSR2_NSD与实测雪深更为接近,相关系数(R)达到0.72,均方根误差(RMSE)为3.21 cm;而Che_SSMI/S_NSD精度较低(R=0.67,RMSE=4.44 cm),可能是由于采用不同传感器亮温数据的两套原始雪深产品精度不同所致。除此之外,实验表明被动微波雪深产品降尺度精度还...
积雪深度(雪深)是流域水量平衡、融雪径流模拟等模型的重要输入参数,被动微波雪深遥感产品被广泛用于雪深监测。然而,由于山区积雪时空异质性强,这些空间分辨率较粗的雪深产品受到极大限制。本研究基于MODIS积雪覆盖度数据,根据经验融合规则以及积雪衰退曲线对“中国雪深长时间序列数据集”的两套雪深产品(由SMMR、SSMI和SSMI/S反演的称为Che_SSMI/S产品;由AMSR-2反演称为Che_AMSR2产品)进行空间降尺度,最终获得青藏高原500 m降尺度雪深数据(Che_SSMI/S_NSD和Che_AMSR2_NSD)。利用6景Landsat-8影像对两套降尺度雪深数据进行对比分析,结果发现两套降尺度数据与Landsat-8影像积雪空间分布吻合度均较高。与29个气象站点雪深数据相比,Che_AMSR2_NSD与实测雪深更为接近,相关系数(R)达到0.72,均方根误差(RMSE)为3.21 cm;而Che_SSMI/S_NSD精度较低(R=0.67,RMSE=4.44 cm),可能是由于采用不同传感器亮温数据的两套原始雪深产品精度不同所致。除此之外,实验表明被动微波雪深产品降尺度精度还...
受复杂地形和遥感数据低分辨率的影响,传统的二值化积雪遥感产品在山区和林区的积雪覆盖度计算中存在严重误算和漏算的问题,从而导致积雪覆盖度估算精度低。基于风云四号A星多通道辐射扫描计(AGRI)新疆地区的遥感影像数据,提出一种多尺度特征融合网络的积雪覆盖度估算方法。通过深度残差网络和特征金字塔模式对卷积层各个阶段的特征信息进行重构,融合深层和浅层特征的多重语义信息,同时结合AGRI数据高时间分辨率的特性,拟合光谱信息和地理因素间的非线性关系,从而提高数据源和特征信息的整体利用率。实验结果表明,相比MOD10_FSC、BP-ANN_FSC和ResNet_FSC方法,该方法在A1~A4样本区中相关系数均值和解释回归模型的方差得分均值最高可提高8和6个百分点,且其均方误差均值仅为0.1,能够获得较高精度的积雪覆盖度估算结果。
受复杂地形和遥感数据低分辨率的影响,传统的二值化积雪遥感产品在山区和林区的积雪覆盖度计算中存在严重误算和漏算的问题,从而导致积雪覆盖度估算精度低。基于风云四号A星多通道辐射扫描计(AGRI)新疆地区的遥感影像数据,提出一种多尺度特征融合网络的积雪覆盖度估算方法。通过深度残差网络和特征金字塔模式对卷积层各个阶段的特征信息进行重构,融合深层和浅层特征的多重语义信息,同时结合AGRI数据高时间分辨率的特性,拟合光谱信息和地理因素间的非线性关系,从而提高数据源和特征信息的整体利用率。实验结果表明,相比MOD10_FSC、BP-ANN_FSC和ResNet_FSC方法,该方法在A1~A4样本区中相关系数均值和解释回归模型的方差得分均值最高可提高8和6个百分点,且其均方误差均值仅为0.1,能够获得较高精度的积雪覆盖度估算结果。
积雪积累和消融过程是冰冻圈水文模型的重要组成部分,利用多源遥感数据对水文模型模拟的积雪分布和深度进行评估是进一步增强融雪过程模拟的物理基础,也是提高模拟可靠性的重要手段。基于2002—2013年疏勒河上游山区流域MODIS地表反射率数据集和中国雪深长时间序列数据集,对VIC-CAS模型模拟的逐日积雪覆盖度和雪深进行了综合评估。结果表明:从不同降雪年份来看,VICCAS模型可以较好地模拟多雪年(2008年)疏勒河上游山区流域积雪的覆盖度,在平雪年(2004年)和少雪年(2013年)模型模拟精度相对较低。从不同海拔的模拟结果来看,在流域占比最高的4 000~5 000m高程带精度最高,2 000~3 000m高程带精度最低;对比模拟雪深与中国雪深产品发现,多雪年的一致性较高,平雪年和少雪年的一致性较低。这表明VIC-CAS模型对疏勒河上游日尺度的积雪覆盖度和雪深的模拟精度相对较低,特别在低海拔处和薄雪情况下,其原因可能是对积雪再分布和风吹雪过程的模拟算法和参数化存在较大的不确定性,需要进一步改进。
积雪积累和消融过程是冰冻圈水文模型的重要组成部分,利用多源遥感数据对水文模型模拟的积雪分布和深度进行评估是进一步增强融雪过程模拟的物理基础,也是提高模拟可靠性的重要手段。基于2002—2013年疏勒河上游山区流域MODIS地表反射率数据集和中国雪深长时间序列数据集,对VIC-CAS模型模拟的逐日积雪覆盖度和雪深进行了综合评估。结果表明:从不同降雪年份来看,VICCAS模型可以较好地模拟多雪年(2008年)疏勒河上游山区流域积雪的覆盖度,在平雪年(2004年)和少雪年(2013年)模型模拟精度相对较低。从不同海拔的模拟结果来看,在流域占比最高的4 000~5 000m高程带精度最高,2 000~3 000m高程带精度最低;对比模拟雪深与中国雪深产品发现,多雪年的一致性较高,平雪年和少雪年的一致性较低。这表明VIC-CAS模型对疏勒河上游日尺度的积雪覆盖度和雪深的模拟精度相对较低,特别在低海拔处和薄雪情况下,其原因可能是对积雪再分布和风吹雪过程的模拟算法和参数化存在较大的不确定性,需要进一步改进。