结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
结合青藏铁路风积沙填堵块石路基特征,利用降雨观测数据,采用数值模拟计算分析降雨条件下风积沙与块石混合层的水热响应特征。结果表明:在年平均气温较高区域,降雨能够抬升冻土上限和降低冻土温度。风沙填堵块石层后,总等效体积含水量在浅表层降低,在冻土上限附近即深度-3.0~-2.0 m处呈增加趋势。同时夏季液态水体积含量和冬季体积含冰量增大,风积沙块石层下部冻土存在水分累积。天然土层下部水分含量变化小,受降雨影响不大。风沙填堵块石层后其下部土层的水分累积,会引起冷暖季节的冻胀融沉,应加强防排水设计措施,防止因路基坡脚积水造成侧向入渗。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。
青藏高原脆弱的生态系统以及人类工程活动,加剧了青藏工程走廊线性工程两侧沙漠化、荒漠化发展趋势,尤其冻土块石路基面临日益严重的风积沙灾害问题。以多年冻土区高等级公路块石路基为研究对象,采用数值模拟分析风积沙环境下封闭块石路基的降温性能和长期热稳定性。结果表明:风积沙堆积对封闭块石路基下部土层冻土温度的影响程度高于冻土上限,1.0 m湿沙工况降低冻土温度,0.2 m干沙则增大冻土温度。升温背景下,随年平均气温增加风沙堆积对路基冻土上限影响程度增强,干沙增大冻土融化深度,湿沙抬升冻土上限。随冻土含冰量减小,路基中心冻土上限对气候升温敏感性增加,风沙堆积影响减弱。气候升温和风沙堆积条件下,在年平均气温低于-5.5℃时,宽幅沥青路面封闭块石路基能够满足降温要求,使人为冻土上限保持在块石层内。研究成果可为风沙危害区多年冻土块石路基的病害治理和拟建青藏高速公路块石路基设计提供科学依据。
青藏高原地区冻土正呈退化趋势,除气候变化、人为活动的影响外,沙漠化也被认为是冻土退化的原因之一,但仍存在较大争议。基于不饱和土渗流和热传导理论,结合CoLM和CoupModel模型,初步构建了积沙-冻土-水热概念模型和耦合模型。并在两模型的基础上,讨论了沙层反射率、积沙体热容量、积沙体厚度和沙的传热率等参数对下伏冻土的热影响过程。结果表明,沙层的反射率、地面发射率均高于天然地表,沙层接受的热量较天然地表偏少;积沙地表下的沙层和活动层能截留更多热量,使冻结层获得的热量相对减少;沙的导热性较差,导致积沙地表下地温变化出现延迟,从而延缓冻土退化;同时,积沙无论厚薄,都将起到延缓冻土退化的作用。因而,沙漠化对青藏高原冻土退化的影响可能较小,但全面揭示沙漠化对冻土的影响仍需深入研究。