冻土的低渗透性改变了地表水下渗,导致寒区流域产汇流过程发生改变;其季节冻融及引起的活动层深度变化,改变了土壤含水量从而调蓄流域储水量。过去数十年,气候变暖引起冻土退化重塑了寒区水文地质环境、改变了地下水热状况;而多年冻土退化的后果是其所含有的固态冰向液态地下水转化,进而改变多年冻土地下水的时空模态、生态环境和工程设施基础,影响多年冻土的碳汇功能,以及释放封存于其内的温室气体并进一步加速气候变化。尽管水化学和数值模拟技术的发展提升了人们对于冻土地下水补径排和循环机理的理解,但冻土区恶劣的环境和直接监测地下水的困难,仍然使冻土地下水研究存在巨大挑战。本文通过梳理多年冻土地下水相关文献,刻画了多年冻土地下水的时空模态,探讨了冻土与地下水的相互作用,认为在未来的研究中,水化学方法应更加侧重于冻土地下水动态,数值模拟应更加侧重于地下水热过程。另外,还整合了气候变化背景下多年冻土地下水变化的相关研究成果,描述了从补给区-排泄区、冻土融化起始-长期退化至消失过程中地下水的赋存、补径排变化以及这些变化所带来的影响。最后,尝试性探讨了冻土地下水研究未来可能的发展,以期为多年冻土地下水水文、水资源和生态环...
活动层作为多年冻土区水热物理和力学动态最活跃的近地表层,是供给高寒植物生长所需水分和营养物质的关键区,是多年冻土与大气圈、土壤圈进行能水和物质交换的主要通道,也是微生物活动最频繁和生物地球化学循环最关键的冷生土壤层。近几十年来,在气候变暖和人类活动增强影响下,多年冻土区活动层厚度(ALT)普遍增加,对寒区环境与冻土工程产生了不利影响。本文对影响天然状态下ALT空间分异的宏观地质地理和微观局地因子、ALT的野外测量和模拟计算方法、ALT对气候变化的响应特征进行了回顾,并探讨了ALT变化对高寒生态环境的影响。研究表明:太阳辐射及其重分布和下垫面的复合作用是ALT空间分异的主因,在其他因素和条件一致时,高程多年冻土下界和纬度多年冻土南界附近的ALT较厚;近三十年来ALT积极响应气候变暖,随气温升高而增加,但区域差异明显,中纬高海拔和山地多年冻土区ALT大部分呈显著增加趋势,而高纬富含冰多年冻土区ALT因地下冰融化下沉,一定程度上抵消了因气候变暖而增加的部分。本文还展望了ALT未来研究方向,认为应聚焦ALT精准模拟制图、ALT变化的自适应机制、ALT变化对生物地球化学循环的影响和ALT变化对水...
作为长江、黄河、澜沧江的发源地,三江源区是我国重要的水源涵养区和生态屏障。在气候变化背景下,三江源区广泛分布的冻土显著退化,对植被变化与生态环境产生深远影响,但近20年植被变化特征及其对气候与冻土变化的响应尚不明晰。基于2001—2020年间三江源区植被、气象与土壤冻融数据集,分析了过去20年间三江源区植被物候变化特征及其对气候因子与土壤冻融要素变化的响应。结果表明:三江源区归一化植被指数(NDVI)整体呈东南高、西北低的空间格局,2001—2020年间三江源区植被整体呈变绿趋势,生长季NDVI以每10年0.017的速率显著增加;植被物候显著变化,生长季延长[6.3 d·(10a)-1],主要由生长季开始日期(SOS)提前[4.9 d·(10a)-1]贡献。基于统计分析结果,气温和降水是生长季NDVI最重要的主导因素,植被对降水的敏感性在气温相对较高、降水相对较少的暖干区域更强;生长季开始前的降水是SOS最重要的主导因素。土壤冻融变化对植被生长的影响具有空间异质性,在暖干区域,土壤融化时段延长对植被生长起到抑制作用。总体来看,三江源季节冻土区...
以位于青藏高原与黄土高原及陇南山地过渡带的甘南藏族自治州为例,基于考虑土壤冻融界面变化的陆面过程模式研究了1979-2012年冻土变化及水资源与生态系统碳通量对气候变化的响应。结果表明,甘南州气候态多年冻土面积约1. 5×104km2,季节性冻土约占2. 5×10~4km2,多年冻土最大融化深度呈增加趋势,季节冻土最大冻结深度逐渐减少,整体上冻土正随着气温上升逐步退化;尽管降雨有所增加,而气温上升引起的蒸散发增加也可能是产流减少的原因之一,其中多年冻土区更为敏感,水热变化增减率较季节冻土区大;生态系统碳循环方面,北部主要表现为碳源,南部则表现为碳汇,升温促进植被生长,使得进入生态系统的碳呈略微增加的趋势,尽管总初级生产力(GPP)与净初级生产力(NPP)呈增长趋势,但植被碳利用效率逐步减小,表明气候变化背景下生态系统固碳能力有所退化;最后经多元回归分析可知,气候变化在多年冻土区可以解释66%的NPP变化与31%的生态系统净交换量(NEE)变化,而在季节冻土区则能解释45%的净初级生产力变化。
[目的]探究祁连山地区冻土的季节性变化以及植被对祁连山季节冻土的影响,建立冻土深度与温度的关系。[方法]对比观测了祁连山排露沟小流域的阴坡青海云杉林下土壤和阳坡草地土壤冻结融化过程,定量分析土壤冻结层随季节的变化。[结果](1)祁连山区季节性冻土每年10月中下旬开始冻结,4月冻土层上界面开始融化,8月消融完毕。该冻结融化过程可划分为单向冻结、单向融化和双向融化3个阶段段。(2)青海云杉林内土壤的冻结起始时间与草地土壤基本相同,但冻结速率比草地快,最大冻结深度比草地大;青海云杉林土壤冻结层融化阶段的起始时间亦与草地基本相同,融化速率相近,但青海云杉林下冻土融化持续的时间更长。(3)积温决定土壤冻结融化进程,当冻结小时积温达到约-460℃·h,土壤开始冻结;当小时积温达到约62℃·h,土壤冻结层的上界面开始融化。[结论]土壤冻结层深度与小时积温的相关系数达到0.9以上,可用于预测预报冻土的冻结状态。
全球变化显著改变了降水与气温的时空分布特征,加之我国特殊的自然地理条件,使得近年来干旱事件呈广发和频发的态势,严重影响农业生产与粮食安全,造成巨大农业经济损失。本项目拟构建渭河流域分布式水文模型,模拟流域尺度农作物产量,分析农业干旱时空演变规律,剖析农业旱灾致灾机理,从而对渭河流域农业旱灾损失进行综合评估。首先,借助分布式水文模型模拟渭河流域水循环过程,并完善其相对薄弱的作物生长模块以模拟流域尺度农作物产量;其次,提出基于蓝水绿水概念的农业干旱评价指标,并优选已有干旱指标分析流域农业干旱时空演变规律;最后,深入剖析渭河流域农业旱灾致灾机理,定量分析作物产量对水分亏缺的响应关系,建立作物水分生产函数,识别农业旱灾致灾因子,探讨干旱对农作物产量的影响,从而对渭河流域农业旱灾损失进行综合评估,为减轻干旱对渭河流域农业的影响提供理论依据与技术支撑。
2014-01