现浇混凝土-冻土接触面传热特性直接影响灌注桩表面冻结强度,研究现浇混凝土-冻土接触面传热特性影响因素对冻土区桩基础设计和施工具有重要意义。基于小型模型桩试验条件建立数值模型,开展混凝土浇筑过程中混凝土-冻土接触面传热特性研究,分析了混凝土浇筑温度、水胶比、冻土温度、冻土含水量引起的接触面热流和温度变化。结果表明:浇筑温度由5℃升高至30℃,0.5 h混凝土与冻土接触面热流增大381.2%.水胶比由0.4增大至0.6,0.5 h接触面热流减少23.7%.接触面温度随冻土含水量的增大呈先增大后减小趋势,峰值在冻土液限附近。导热系数和相变热作用的转变起到了决定作用。冻土温度在-1-3℃之间降低时,接触面温度随冻土温度降低而升高。浇筑后0~1 h(尤其是0~0.5 h)是混凝土对冻土释放热量的主要时间。
关于混凝土-冻土接触面的力学强度研究多集中于预制成型混凝土样(块)与冻土接触面的力学试验研究,而与工程实际更为接近的冻土中现浇混凝土、冻结稳定后混凝土-冻土接触面的力学强度研究则少有涉及。基于冻土中现浇混凝土的试验方式,开展了不同水灰比、含冰量及冻土温度条件下,混凝土-冻土复杂接触面冻结强度的直剪试验研究。结果表明:试验条件下,由于混凝土中粗、细骨料导热系数及水化热侵蚀强度不同,冻土中现浇混凝土会导致混凝土-冻土接触面发生起伏变化。受该因素影响,粗糙接触面较光滑接触面的冻结强度增大71.9%。粗糙接触面引起的应力集中,使得剪应力在剪切破坏过程中出现间歇性增大、跳跃。在冻结强度构成中,随接触面粗糙程度的增大,φ值对冻结强度增长的贡献要大于c值。水灰比由0.4增至0.6,混凝土导热系数降低,生成接触面趋于光滑,冻结强度减小;土体含水量由15%增大至30%时,冻结强度增大,含水量继续增大至40%时,冻结强度减小;在不同温度条件下,整体呈现冻土温度降低冻结强度相应增大的趋势。基于上述结果,多年冻土区灌注桩设计时,建议混凝土采用0.4~0.5水灰比。