青藏铁路1401旱桥位于唐古拉山多年冻土区。青藏铁路正式运营后,1401旱桥桩基连续多年出现沉降现象,严重危害了铁路的安全运营。对2009—2018年间沉降数据的分析表明,经过2009年、2011—2012年以及2017年三期的整治,该旱桥桩基已经趋于稳定。进一步分析发现,1401旱桥桩基沉降的主要原因包括浅层多年冻土夏季升温、青藏铁路沿线气候变暖、深层承压水外泄导致的冻土升温和下限升高。青藏铁路1401旱桥桩基的整治措施表明,冻土区桩基沉降的治理工作是一个复杂长期的过程,必须综合考虑各项整治措施对多年冻土地基的热扰动,建议开展青藏铁路旱桥的监测,增强早期发现、治理桩基病害的能力,提高青藏铁路旱桥路段的运营水平。
通过对高原冻土层遮阳装置进行改进,分析了遮阳装置的传热热力学理论,为改进其传热通路提供了理论依据,并提出一种新型路基结构复合装置提升高原冻土路基热稳定性。使用三维制图软件对改进前后冻土层路基结构进行建模,之后使用ANSYS仿真软件对改进前后的结构进行热学仿真分析,对比分析改进前后的仿真结果可以发现,新型遮阳装置由于采用了空心砖阻热结构,降低了自身热导率,使得路基冻土层温度相较于之前的遮阳装置温度下降了3.248℃,对改善路基热稳定性起到了很好的作用,为高原冻土层路基热稳定性能的提升提供了新的思路。
高寒冻土沼泽湿地对温度极为敏感,在该区域修筑路基易发生不均匀沉降变形,而路基修筑的施工季节是影响路基热稳定性的重要因素之一。为研究最佳施工季节和季节选定对路基热稳定性的影响,以省道224线二道沟兵站109岔口至治多段为依托,针对抛填片块石处治高寒冻土沼泽湿地的典型路基处治方式,建立有限元模型,分析春、夏、秋3个施工填筑季节对高寒冻土沼泽湿地路基热稳定性的影响。结果表明,路基中心和坡脚处的温度随着深度的增加逐渐降低,同一深度处路基中心处温度高于坡脚处温度,随着运营时间增加,冻土上限降低,路基中心处的冻土上限明显更低。在夏季施工填筑时引起的冻土上限下降值在相同位置处是秋季施工填筑引起冻土上限下降值的1.3~2.5倍。故认为秋季为最佳施工季节,秋季施工对路堤底部的热稳定性影响最小,夏季施工影响则最大,春季介于两者之间。
基于附面层理论,引入焓值建立伴有相变的二维非稳态温度场数值模型,分别对水泥混凝土和沥青两种路面下路基温度场的变化规律进行分析。研究结果表明,水泥混凝土路面下路基温度场明显低于沥青路面,不同深度处路基的温度场变化存在一定的滞后性,随深度的增加路基内温度场比路基基底以下的温度场变化幅度大;路表温度明显低于路基的内部温度,并在路基内部形成融土核;水泥混凝土路面融化深度小于沥青路面,融化速率趋于平稳,因此,在多年冻土区采用水泥混凝土路面比较有利。
多年冻土区钻孔灌注桩基础施工带来的热扰动削弱了桩基础的早期热稳定性,降低了桩基承载力。通过早期热稳定性影响因素、热稳定性对承载力的影响及其改善措施三个方面对钻孔灌注桩基础早期热稳定性的研究现状进行归纳总结。研究表明:首先,多年冻土区钻孔灌注桩基础具有热扰动范围大、回冻时间长的特点,其中水化热及胶凝材料、入模温度、成孔方式作为主动影响因素是热扰动的主要来源,桩基特征及冻土工程地质条件作为间接因素也对早期热稳定性产生次要影响;其次,钻孔灌注桩热扰动显著降低了桩基早期的承载力,延缓了上部结构施工时间;在削弱桩基早期热扰动方面,人工制冷、热管等措施具有良好的加速回冻效果。基于桩基承载力与冻土地温的密切关系,未来还需进一步定量评估冲击钻成孔施工方式、灌注桩施工季节、群桩设计参数对桩基早期热扰动的影响,深入认识早期热扰动作用下桩基承载力的变化规律、设计荷载与冻土蠕变的关系及其对工期的影响,并研发施工更加便利、效果更加显著、适用范围更广的低水化热胶凝材料和钻孔灌注桩控温措施,有效提高钻孔灌注桩早期的承载力。
自青藏铁路通车以来,其冻土地区铁路路基的融沉冻胀病害层出不穷,铁路路基过渡段的差异沉降问题尤为严重。基于一般地区铁路路基过渡段差异沉降的治理方法,结合冻土区铁路路基的主动降温措施,对冻土区铁路路基过渡段施工结构进行了探索性的改进研究,并对改进后铁路路基过渡段的长期热稳定性进行了分析。结果表明:将传统块碎石铁路路基上层路基填料换填成一定高度的单一粒径碎石,可使铁路路基在满足力学稳定性的前提下,实现最大限度的自然对流换热效应;通过数值模拟计算分析发现,改进后的铁路路基过渡段结构在气温变暖的环境背景下主动降温效果明显,且长期热稳定性好;桥台对铁路路基过渡段的温度场影响较大,建议对受太阳辐射强烈的桥台进行保温处理。
选取东北多年冻土区锥柱式电力杆塔基础为研究对象,基于含相变的热传导理论,采用有限元方法对-1.8℃、-3.5℃和-6.1℃三种年平均气温下不采取保护措施和采取PUR保温板措施的塔基温度场、基底温度变化以及基底的融化层厚度进行了数值分析.结果表明,东北多年冻土区电力杆塔基础修筑过程中,由于施工以及混凝土杆塔良好的导热作用,会对地基土体的温度场产生较大的扰动.施工完成后短时间内杆塔基础底部温度会快速升高,导致地基土体发生融化,严重威胁电力杆塔的热稳定性.在基础旁边设置PUR保温板能明显减弱塔基底部多年冻土温度的上升,有效控制塔基底部的融化范围,对塔基热稳定性具有明显的提升作用.
在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验。结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96℃,制冷影响半径比热管制冷装置的大0.13~0.87m,实际制冷量为热管制冷装置制冷量的1.97倍。
利用ANSYS有限元软件,引入附面层原理,对高纬度多年冻土区沥青路面下路基温度场进行模拟。研究结果表明:运营30年,各深度处的年平均地温发生着具有一定规律的升高,且变化的幅度也随着深度的增加而衰减;路表下浅层温度场变化幅度最大,深层温度场变化幅度越来越小;随时间和气温的逐年增长,冻土人为上限逐年下移,将严重影响路基的热稳定性。
随着西部大开发的深入推进,大量的工程将集中在宽度不足10km的青藏工程走廊的范围内,工程之间的相互作用对冻土路基的热稳定性将造成重要的影响。本文通过冻土路基设计思想、热稳定性评价标准、研究方法与结论,热稳定性提升措施四个方面对冻土路基热稳定性的研究现状进行了总结,并对其未来研究的方向和趋势进行了展望。以期为相关科研人员和工程人员提供一个相对全面的文献基础。