共检索到 28

块石护坡在多年冻土区路基工程建设和维护中已得到广泛应用。近年来,有关块石护坡的降温效能存在一些争议,尤其是在高温冻土区其能否抵御气候变暖的不利影响这一问题引起了学者的关注。基于青藏铁路近20年现场观测数据和数值模拟预测,探讨气候变暖背景下高温冻土区块石护坡路基50年内的热状况演化规律以及天然场地高温冻土退化过程。结果表明:块石护坡路基能够有效抬升人为冻土上限,路基运营20年后人为冻土上限较原天然上限仍有近2 m的抬升;路基运营20年内,浅层冻土地基存在明显升温过程,导致人为上限以下形成厚度达6~8 m的高温冻土层,其压缩和蠕变变形可引发量值可观的路基沉降变形;在50年气温升高2.6℃情景下,路基运营30年后人为冻土上限下降至同期天然场地冻土上限水平,此后路基人为上限与天然冻土上限同步下降,会进一步引发显著的路基沉降变形。对于高温冻土区块石护坡路基而言,依据路基热状况和变形发展过程,适时采用如热管类的补强措施是必要的。

期刊论文 2023-12-08

土壤温度是陆面过程中地-气系统间能量与物质交换的重要参数,它的动态变化及其对气候变化的响应也是研究陆面过程的关键问题之一。在全球变暖背景下,研究青藏高原多年冻土活动层土壤热状况动态变化,对深入了解高原活动层厚度的变化特征及下垫面的热力作用均有重要意义。利用BP神经网络模型,对青藏高原风火山地区的地表温度进行了模拟,并利用输出的地表温度驱动FEFLOW模型对研究区活动层不同深度土壤温度进行了模拟。与各深度土壤温度观测值对比发现,均方根误差介于0.09~1.78℃,纳什效率系数介于0.86~0.98,模拟效果良好。结合BP神经网络模型和FEFLOW模型预测了研究区未来50年活动层热状况的动态变化过程,结果表明:在0.02、0.048、0.07℃·a-1三种升温情景下,50年后研究区活动层厚度将分别增加19.4、51.8、64.7cm,土壤升温幅度随着深度的增加逐渐减小。同时发现,随着气温不同程度的升高,土壤开始融化的时间在不断提前,开始冻结的时间则不断延迟,这种规律随着土壤深度的增加而减弱,但不同深度土壤冻融过程对气温升高的响应差异却随着增温速率的增大而逐渐减小。

期刊论文 2019-06-12

土壤温度是陆面过程中地-气系统间能量与物质交换的重要参数,它的动态变化及其对气候变化的响应也是研究陆面过程的关键问题之一。在全球变暖背景下,研究青藏高原多年冻土活动层土壤热状况动态变化,对深入了解高原活动层厚度的变化特征及下垫面的热力作用均有重要意义。利用BP神经网络模型,对青藏高原风火山地区的地表温度进行了模拟,并利用输出的地表温度驱动FEFLOW模型对研究区活动层不同深度土壤温度进行了模拟。与各深度土壤温度观测值对比发现,均方根误差介于0.09~1.78℃,纳什效率系数介于0.86~0.98,模拟效果良好。结合BP神经网络模型和FEFLOW模型预测了研究区未来50年活动层热状况的动态变化过程,结果表明:在0.02、0.048、0.07℃·a-1三种升温情景下,50年后研究区活动层厚度将分别增加19.4、51.8、64.7cm,土壤升温幅度随着深度的增加逐渐减小。同时发现,随着气温不同程度的升高,土壤开始融化的时间在不断提前,开始冻结的时间则不断延迟,这种规律随着土壤深度的增加而减弱,但不同深度土壤冻融过程对气温升高的响应差异却随着增温速率的增大而逐渐减小。

期刊论文 2019-06-12

为明确中低纬度高海拔多年冻土区"宽厚黑"路面结构和路面类型对路基路面体系温度场的影响规律,在青藏高原高温多年冻土区分别铺筑了窄幅和宽幅沥青路面-路基温度场监测试验段,对两种尺度路基路面体系不同深度和横向位置处以及天然大地不同深度处温度状况进行3年连续观测和统计分析。结果表明:宽幅路面沥青层年温度波动幅度高于窄幅路面,且波动幅度差异随路面结构层深度增加而减小;新建公路路基填土会经历持续2年以上的初期冻融放吸热不稳定阶段;高填方宽幅沥青路面-路基体系吸热面积与散热面积的同时增加导致宽幅路基路面体系不同横向位置和深度处温度场更为复杂;沥青路面宽度从5m增加到24.5m导致最大融化深度增加量在1.5~2.0m。在中低纬度高海拔多年冻土区设计宽幅公路路基填土高度时应考虑具体路基断面特点,计算极端天气下的宽幅路基路面体系从建设期到稳定期的温度场,保证阳面路肩一侧融化深度始终满足要求

期刊论文 2019-03-27 DOI: 10.15951/j.tmgcxb.2019.03.011

为明确中低纬度高海拔多年冻土区"宽厚黑"路面结构和路面类型对路基路面体系温度场的影响规律,在青藏高原高温多年冻土区分别铺筑了窄幅和宽幅沥青路面-路基温度场监测试验段,对两种尺度路基路面体系不同深度和横向位置处以及天然大地不同深度处温度状况进行3年连续观测和统计分析。结果表明:宽幅路面沥青层年温度波动幅度高于窄幅路面,且波动幅度差异随路面结构层深度增加而减小;新建公路路基填土会经历持续2年以上的初期冻融放吸热不稳定阶段;高填方宽幅沥青路面-路基体系吸热面积与散热面积的同时增加导致宽幅路基路面体系不同横向位置和深度处温度场更为复杂;沥青路面宽度从5m增加到24.5m导致最大融化深度增加量在1.5~2.0m。在中低纬度高海拔多年冻土区设计宽幅公路路基填土高度时应考虑具体路基断面特点,计算极端天气下的宽幅路基路面体系从建设期到稳定期的温度场,保证阳面路肩一侧融化深度始终满足要求

期刊论文 2019-03-27 DOI: 10.15951/j.tmgcxb.2019.03.011

为了解路基填筑对路基下多年冻土热状况的影响程度,在国道214沿线典型地段设置了监测断面,在天然场地路基中心、左右路肩及左右坡脚等处布设了测温孔。采用现场监测和数值模拟相结合的方法,分析了国道214沿线路基下伏多年冻土热状况长期变化情况。研究结果表明:多年冻土区修筑普通路基以后,多年冻土地温逐渐升高,路基下多年冻土发生快速融化;开始融化的时间提前,完成回冻的时间有所延后;针对K369+210断面,左路肩、路基中心以及右路肩下8m处升温速率分别为0.040,0.050,0.047℃·年-1,人为上限下降速率分别为16.82,25.36,16.73cm·年-1;在考虑全球气温升高的情况下,多年冻土温度持续升高,路基下多年冻土处于持续退化状况;年平均地温越高,人为上限下降的幅度越大;在路基运营30年内,多年冻土上限仍处于下降状态,这将严重威胁多年冻土路基的安全运行;需要及时采取措施主动冷却路基来保护冻土,避免产生更大的融沉变形,从而保障路基正常运营。

期刊论文 2016-12-22 DOI: 10.19721/j.cnki.1001-7372.2016.11.004

为了解路基填筑对路基下多年冻土热状况的影响程度,在国道214沿线典型地段设置了监测断面,在天然场地路基中心、左右路肩及左右坡脚等处布设了测温孔。采用现场监测和数值模拟相结合的方法,分析了国道214沿线路基下伏多年冻土热状况长期变化情况。研究结果表明:多年冻土区修筑普通路基以后,多年冻土地温逐渐升高,路基下多年冻土发生快速融化;开始融化的时间提前,完成回冻的时间有所延后;针对K369+210断面,左路肩、路基中心以及右路肩下8m处升温速率分别为0.040,0.050,0.047℃·年-1,人为上限下降速率分别为16.82,25.36,16.73cm·年-1;在考虑全球气温升高的情况下,多年冻土温度持续升高,路基下多年冻土处于持续退化状况;年平均地温越高,人为上限下降的幅度越大;在路基运营30年内,多年冻土上限仍处于下降状态,这将严重威胁多年冻土路基的安全运行;需要及时采取措施主动冷却路基来保护冻土,避免产生更大的融沉变形,从而保障路基正常运营。

期刊论文 2016-12-22 DOI: 10.19721/j.cnki.1001-7372.2016.11.004

基于青藏铁路楚玛尔河试验段10年(2003~2013)的地温监测资料,对青藏铁路4种典型路基结构的长期热状况进行了对比分析.结果表明,不同路基结构的长期热状况表现出较大的差异.普通路基与块石基底路基地温场存在明显的不对称分布,表明以上两种路基结构不利于路基的长期热稳定.但块石护坡路基与U型块石路基的地温场分布则表现出了较好的对称性.尽管块石护坡路基下浅层冻土地温存在一定的降温过程,但深层多年冻土却呈现出缓慢升温趋势,显示U型块石路基的热稳定性要优于块石护坡路基.被监测的4种路基结构中,U型块石路基在降低多年冻土温度与提高路基地温场对称性方面表现出了最佳的长期效应.基于青藏铁路10年的监测结果,充分肯定了主动冷却路基设计思路在保护冻土路基长期热稳定性方面的有效性,同时采用冷却路基技术的青藏铁路也达到了时速100 km h?1的设计要求.尽管如此,由于坡向效应所导致的路基左右路肩下的热差异存在于所有监测的路基结构中,但不同结构的热差异幅度不同,并将可能导致路基发生潜在的非均匀性沉降变形,因此需要在后续的维护工程中进行调整.

期刊论文 2015-08-31

基于青藏铁路楚玛尔河试验段10年(2003~2013)的地温监测资料,对青藏铁路4种典型路基结构的长期热状况进行了对比分析.结果表明,不同路基结构的长期热状况表现出较大的差异.普通路基与块石基底路基地温场存在明显的不对称分布,表明以上两种路基结构不利于路基的长期热稳定.但块石护坡路基与U型块石路基的地温场分布则表现出了较好的对称性.尽管块石护坡路基下浅层冻土地温存在一定的降温过程,但深层多年冻土却呈现出缓慢升温趋势,显示U型块石路基的热稳定性要优于块石护坡路基.被监测的4种路基结构中,U型块石路基在降低多年冻土温度与提高路基地温场对称性方面表现出了最佳的长期效应.基于青藏铁路10年的监测结果,充分肯定了主动冷却路基设计思路在保护冻土路基长期热稳定性方面的有效性,同时采用冷却路基技术的青藏铁路也达到了时速100 km h?1的设计要求.尽管如此,由于坡向效应所导致的路基左右路肩下的热差异存在于所有监测的路基结构中,但不同结构的热差异幅度不同,并将可能导致路基发生潜在的非均匀性沉降变形,因此需要在后续的维护工程中进行调整.

期刊论文 2015-08-31

基于青藏铁路沿线长期地温监测资料,对天然场地及铁路路基下部的浅层地温、多年冻土上限及下伏冻土地温动态变化过程进行对比分析,研究多年冻土区铁路路基热状况对于工程扰动及气候变化的响应过程.监测结果表明,路基修筑后边坡热效应显著,由此导致路基下部多年冻土热状况的不对称分布,必须引起足够的重视.块石路基修筑后,下部多年冻土上限抬升显著,其中阴坡路肩下抬升幅度普遍较阳坡路肩下显著.普通路基修筑后,在年平均地温低于?0.6~?0.7℃的地区下部多年冻土上限有不同程度的抬升,而在年平均地温高于?0.6℃的地区下部冻土上限则出现了一定程度的下降,其中阳坡路肩下降幅显著.受块石层冷却降温作用,低温冻土区块石路基下部浅层冻土地温有明显降温过程,而在高温冻土区这一降温趋势只存在于阴坡路肩下.对于普通路基,多年冻土上限抬升后,浅层冻土地温存在一定的升温过程.对于气候变暖,低温冻土区多年冻土的响应主要集中体现在冻土升温上,而高温冻土区多年冻土的响应则主要表现为冻土上限下降,冻土厚度减小.基于上述监测结果,可将目前青藏铁路路基热状况分为稳定型(低温冻土区块石路基)、亚稳定型(低温冻土区普通路基及高温冻土区块石路基...

期刊论文 2013-04-17
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共28条,3页