基于高温不稳定多年冻土区保温护道路段地温监测数据,分析了天然场地及左右路肩下地温、年平均地层温度、热收支及多年冻土上限变化等,探讨了气候变暖及阴阳坡效应下路基不同位置不同深度热状态变化特性及其与天然场地的差异。结果表明:左右路肩阴阳坡效应显著,左路肩下多年冻土最大融化深度为右路肩的2倍,最大融化深度降低速率为右路肩的5倍,且左路肩下多年冻土上限下降速率为右路肩的1.5倍;右路肩处在阴坡且保温护道可能对其多年冻土维持稳定起到了一定积极作用,抬升了其人为冻土上限并减缓了上限下降速率。不同位置年平均地层温度均呈上升趋势,且增长速率随深度逐渐降低,然而左路肩的路基与天然场地交界面附近温度增长速率大于2.5 m深度处,表明此特殊位置土层在多因素作用下可能受到更强的热扰动影响。一般情况下,冻土吸热放热量均随深度降低逐渐减少,但多年冻土上限处在0℃等温线的特殊位置,可能出现吸热量突然增大的现象;多年冻土上限处由于深度较深,热收支增长速率已不受阴阳坡效应影响,该断面左路肩多年冻土上限处年平均热收支为右路肩的2.92倍,但其热收支增长速率几乎相等。
基于最大融化深度、基底总吸热量、冻土融化潜热和热融蚀敏感系数四个指标,从高度效应、宽度效应、坡度效应和冻土年平均地温方面综合阐述了冻土路基热收支的尺度效应。同时基于统计学原理,对影响冻土路基热收支尺度效应的因素进行显著性分析,探究多因素交互作用的效应性。结果表明:路基高度对最大融化深度的影响最大,冻土年平均地温对基底总吸热量的影响最大,路基宽度和冻土年平均地温对冻土融化潜热量的影响最大,路基高度和路基宽度对冻土融化潜热量的影响最大。研究冻土路基热收支尺度效应,应综合考虑多因素之间的交互作用。
基于高温不稳定多年冻土区长期温度数据,针对片块石路基温度变化、热收支、冻融循环特征进行了分析。结果表明,片块石层作为主动冷却措施的一种,增加了冷热空气的交换,减少了进入路堤的热量,有效地减少了热扰动对路基下路多年冻土热稳定性的不利影响,但观测期间路基中心下的最大融化深度有逐渐增大趋势,且热量在路基阳坡热收支远大于阴坡,右路肩热收支是左路肩的2. 73倍,右坡脚热收支是左坡脚的2. 29倍,这种热量差异引起路基阳坡下伏多年冻土升温大于阴坡,导致阳坡冻土上限发展速率明显大于阴坡。
为分析多年冻土区高速公路宽幅路基热稳定性,量化评价路基尺度变化对冻土路基热收支状态的影响,提出了路基的尺度效应概念,以描述因路基尺度变化而引发的路基热收支状态的变化;应用数值仿真模拟手段,对比分析了不同路基尺度下冻土路基的热量传输过程。研究结果表明:随路基宽度和高度的变化,路基热收支状态变化明显;在高温冻土区,宽幅路基的基底吸热量增大20%以上,路基下冻土融化潜热增大2.2倍以上,表现出更大的融沉风险;在低温冻土区,虽然宽幅路基基底吸热量变化不大,但热融蚀敏感系数明显增大,其面临的融沉风险不可忽视;与实测数据相比,提出的计算模型合理且可行。
基于现场地温监测数据,选取年平均地温不同的监测断面对青藏铁路普通路基的热状况进行分析,包括多年冻土上限变化及其地温变化、下伏多年冻土温度变化、原天然地表附近热收支等方面.结果表明:在低温多年冻土区,路基下部多年冻土上限均有所提升,且新近形成的人为上限较为稳定,冷季时负温积累显著;路基下伏多年冻土总体热稳定性较好.而在高温多年冻土区,左(阳坡)路肩下部多年冻土上限多表现为下降,右(阴坡)路肩下部多年冻土上限有升有降,但是新近形成的上限均温度较高且有进一步升温的趋势;与天然场地地温相比,路基下部多年冻土均出现一定的升温.尤其在高温极不稳定多年冻土区,天然场地多年冻土自身处于吸热升温状态;路基修筑后,下部多年冻土已经出现了融化夹层及双向退化的情况,路基热稳定性较差.对于普通路基来说,由于青藏高原强烈的太阳辐射及青藏铁路总体走向原因,普通阴阳坡效应显著,左、右路肩下部多年冻土热稳定性差异较大.
本文主要利用青藏铁路北麓河厚层地下冰试验段中普通路基下部冻土温度的监测资料,对路基下部冻土温度变化和热收支特征进行了分析,并对修筑普通路基后多年冻土热融蚀敏感性和热稳定性进行了计算。结果表明,修筑普通铁路路基后,虽然多年冻土人为上限有较大幅度抬升,但原天然上限以下多年冻土温度却逐年升高,表现为显著的吸热状态。同时冻土热融蚀敏感性增强,冻土热稳定性下降,对路基热稳定性将产生较大的影响。
基于青藏铁路北麓河试验段块、碎石护坡路基阳坡坡中孔的地温观测资料,分析了块、碎石护坡下的温度变化过程及进入块、碎石层下部土体的热收支情况.结果表明:观测期内块石层下平均温度低于碎石层下平均温度,而块石层下温度波幅大于碎石层下温度波幅.块石层下最大融化深度有明显的抬升,这种抬升得益于冷季块石层内空气较强的对流冷却作用.从进入块、碎石层下部土体的热收支情况来看,块石层较碎石层具有更好的冷却作用.
基于青藏公路沿线2组地温观测孔5年的地温观测资料,定量分析了高温冻土区和低温冻土区路基内的热状况。结果表明:路基近地表地温明显高于对应天然地表下的地温,路基近地表经历的融化期长于对应天然地表,高温冻土区路基内已形成贯穿融化夹层;进入路基内活动层的热收支呈明显热积累状态;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态,进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因,低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主,随着地温的增高,低温冻土区也可能发生强烈的冻土融化。