为探讨热管最佳工况,搭建了适用于多年冻土区的氨-钢热管试验台。通过监测热管内部轴向、外壁的温度分布以及外壁面的热流密度变化,在负温条件下开展了不同充液率(20%、30%、40%)和倾角(10°、30°、50°、70°、90°)对热管传热性能影响的试验。试验结果表明:在三种充液率下,热管处于10°倾角时均温性最佳;充液率为30%和40%的热管倾角50°时总热阻最小、传热效率最高,充液率为20%条件下热管的总热阻和传热效率在倾角30°时分别达到极小值和最高值。总体而言,充液率为30%的热管具有最佳传热表现。
高速铁路岛状多年冻土区钻孔灌注桩在保证桩身稳定性和承载力前提下施工具有可行性,但需采取必要的施工控制措施。本文以小兴安岭南麓,沿线穿越多处岛状多年冻土的铁力至伊春高速铁路钻孔桩基础为研究对象,研究了冻土区的施工工艺和施工方案。结果表明:(1)旋挖钻机可用于高速铁路岛状多年冻土钻孔桩的施工;(2)可采用双层护筒钻孔桩施工,冻土段位于承台及以上的护筒分段钻进下放护筒,冻土段位于承台底及以下的采用双层长护筒施工;(3)导管采用分段吊装入孔技术,提前分段将导管组装完成,减少吊装过程中使用的连接接头;(4)泥浆可根据现场条件采用膨润土造浆;(5)钻孔灌注桩清孔后的泥浆性能指标应符合要求。值得注意的是施工时及时安装温度传感器以掌握周围温度场情况,在施工后采取保温隔热措施减小冻深。
针对施工单位在实际工程越冬维护温度监控工作中出现的温度监测效率低、准确率难以保证等问题,采用多物理模拟软件COMSOL Multiphysics,开展了越冬维护期间冻结土壤温度场模拟。结合吉林省松原市某具体在建工程试验,构建了温度模型,考察了试验不同测温点温度监测值与温度模拟值的关系。从温度监测值与温度模拟值对比曲线图可知:温度场数值模拟得到的温度与试验得到的温度吻合度较高,可应用于实际工程中;仿真模拟得到的温度更能有效地预测季节性冻土地区冬季冻土内部温度的发展规律。
为了服务青藏高原铁路建设需要,本文在分析青藏高原冻土水热物理特性基础上,研究了冻土测试专用热敏电阻的非线性特性,通过实验逐点测试传感器温度值并进行分段拟合,得到热敏电阻的阻温关系曲线。结合青藏高原恶劣自然环境,设计了一种适应于青藏高原不同深度冻土温度监测系统。引入四线制方法,巧妙地设计了64通道温度监测电路,实现了不同深度冻土温度监测功能。根据测试精度要求,提出一种温度校正方法,解决了热敏电阻测量不稳定,信号畸变等问题。经过系统性能分析与实验室测试,结果表明系统能够满足不同深度冻土温度监测精度要求,功耗较低,具有良好的工作性能。
埋地输油管道的建设和运行势必会破坏多年冻土的稳定性,容易引发冻胀、融沉、崩塌、热融滑坡,从而导致管道弯曲、翘曲等灾害。由于多年冻土对温度具有极敏感性及其破坏的不可逆性,因此,需要对多年冻土区埋地输油管道周围温度场的监测开展研究。以漠大管道为例,选取典型管段,设计了适用于漠大管道周围温度场监测的测温系统。结果表明:管道设置合理的保温措施可有效阻隔输油管道向土壤的放热,减小管道周围土壤的融化范围,缓解管道融沉,为管道冻土灾害综合整治提供决策依据。
祁连山冻土区木里盆地三露天井田自2008年首次钻采到天然气水合物实物样品以来,实现了中低纬度高山冻土区天然气水合物勘探的重大突破。天然气水合物钻孔DK-9于2013年发现水合物,通过对该孔长期地温实时监测,获得了稳态的地温数据。结果表明,祁连山多年冻土区聚乎更矿区三露天井田冻土层底界为约163 m,冻土层的厚度达约160 m,冻土层内的地温梯度为1.38℃/100 m,冻土层以下的地温梯度达4.85℃/100 m。根据天然气水合物形成的温-压条件分析,聚乎更矿区具备较好的天然气水合物形成条件,天然气水合物稳定带底界深度处于510~617 m之间。
通过在高纬度、低海拔岛状多年冻土浇筑两根直径1.2 m、长度15 m的试验桩,研究人员布设了温度监测系统,依据温度检测结果,在桩基回冻前、后进行了自平衡静载试验。试验结果得出桥梁钻孔摩擦桩在多年冻土中的极限承载力是非多年冻土极限承载力的1.42倍,根据试验研究确定桥梁钻孔摩擦桩在多年冻土中的极限承载力值,可以计算出该地质条件下各冻土层的摩阻力值,可为大兴安岭地区多年冻土条件下桥梁钻孔灌注桩的设计和施工提供理论依据。
为获取岛状多年冻土地区钻孔灌注桩和桩周冻土的温度场变化规律,依托大兴安岭岛状冻土区漠大线林区伴行公路工程,在K216+746处工程桥桩位置建立试桩试验场。通过对试验场地桩-土的温度监测,得到试桩浇筑完之后,桩体的温度随时间的变化曲线和桩侧冻土不同深度处的温度随时间的变化曲线。从中发现冻土上限位置以上部位的桩-土的温度受到外界大气温度变化的影响显著,越往下影响越弱;桩基的回冻期为2个多月;混凝土水化热横向传递速度为0.2m/d,热扰动范围为1~2倍桩径。
漠大线自投产以来,全年均为正温输送,且输送温度远高于设计温度,因而加速了管道周围冻土区的融化,管道容易发生融沉,安全性面临极大考验。结合漠大线投产后的实际运行情况,参考冻土区工程建设经验,设计了热棒与粗颗粒土换填相结合的多年冻土沼泽区域管道融沉防治方案,并在漠大线K305处完成了100 m示范段建设,并在示范段管道周围土壤中安装了温度监测系统,通过近一年的温度监测数据分析了目前示范段的融沉防治情况。结果表明:热棒的安装降低了管道地基的温度,增加了土壤的冷储量,起到了稳定地基的作用,而管道底部换填的粗颗粒土可以保障热棒的制冷作用不会引发管道冻胀灾害。(图14,表1,参10)
将GSM技术应用到冻土区土壤温度自动监测中,以满足恶劣气候条件下的无人值守、长时间、多点监测需求。详细阐述了系统结构、施工过程及实验结果分析。结果表明,该系统测量精度高、可靠性好、功耗低,可实现较大范围内的多点测温及超远距离无线监测。