为了探索高寒地区沥青路面铺筑短期对冻土层温度场的影响,通过对路面各结构层材料进行热传导试验和碎石空隙率试验,得出不同结构层的热力学参数,通过有限元方法建立二维冻土温度场模型,分析了沥青路面在4月、7月和10月份铺筑短期对冻土温度场的影响规律。结果显示:沥青路面铺筑短期的热效应使得冻土温度场呈梯形分布。其中,7月份铺筑路面造成冻土层温度上升最高可达2.13℃,冻土0℃等温线下降深度大于0.78 m,最不利于冻土的温度稳定性。为此,基于弯沉等效思想在路基顶面通过铺设碎石层进行温度改善和刚度补偿设计,结果显示:铺设1.0 m厚的碎石层,路基和冻土层温度下降1.89~27.22℃,0℃等温线抬升0.54~1.95 m,路基顶面当量回弹模量可提升至125~180 MPa,以上可为高寒冻土地区的公路建设提供参考。
以北京东六环隧道盾构段联络通道冻结施工为背景,研究超大直径隧道土体与管片交界面处冻结温度场。采用现场实测和数值模拟的方法,对交界面处冻结壁的发展状况以及冻结管端部不循环段长度对交界面冻结的影响进行了分析。结果表明:同一位置的数值模拟温度变化与工程实测基本一致,能较好反映土体温度变化;在冻结过程中,同远离管片的另一截面相比,交界面处的冻结壁厚度更小,且随着冻结时间的增加,两个截面处冻结壁厚度差值逐渐增大,到冻结56 d时,冻结壁上壁厚度差值达到1.04 m,冻结壁侧壁厚度差值达到0.91 m;冻结管不循环段长度会明显影响交界面的冻结效果,间距平均每增加100 mm,在冻结56 d时的交界面冻结壁上壁厚度将减小80 mm,侧壁厚度将减小60 mm。研究结果可为类似的大直径隧道联络通道冻结工程提供参考。
为研究冻土路堤拓宽后的阴阳坡效应和地震反应差异,以青藏地区多年冻土环境为研究背景,综合考虑了气温变化、太阳辐射、风速和对流换热等边界条件对冻土路堤温度场的影响,建立了有限元模型,通过有限元分析软件Abaqus分析了路堤加宽前后的温度场变化规律。通过原始路堤和加宽路堤各月份的路堤温度场结果,对路堤模型进行了区域划分和材料填充,分析了地震荷载作用下路堤的加速度响应和位移响应。结果表明:在不考虑加宽路堤材料和路堤搭接方式对路堤加宽的影响下,相比于原始路堤,加宽路堤并未对路堤阴阳坡效应产生放大作用,并且阴阳坡效应不会对地震反应差异产生影响。
在季节性冻土区,气候因素引起的土体季节性冻融对桩基础的水平承载影响显著,在地震等水平荷载作用下桩基础极易发生断桩等脆性破坏。为消除或减弱季节性冻融对桩基的影响,文中采用抗冻融且高阻尼的橡胶-砂胶结材料置换桩周表层土体,改善桩基的水平承载特性;结合美国阿拉斯加地区某实际工程桩,对季节性冻土区进行温度场模拟,建立桩-土相互作用有限元模型,对比分析置换前后桩基础的受力与变形,并对置换范围进行优化,得到最佳置换宽度和置换深度分别为1.0d、6.0d(d为桩基直径)。
以传热学为基础,结合川藏铁路沿线冻土区某桥梁工程实例,确定边界条件与模型计算热力学参数。通过有限元软件建立三维数值模型分析求解,绝热温升的数值模拟计算值与公式理论计算值相吻合,研究了低温环境下桩基浇筑完成后桩土温度场的演化规律,分析并探究了温度应力的成因及其控制措施,以改善桩基的工作性能。结果表明:在混凝土浇筑完成前期,受水泥水化热的影响,桩中心温度明显高于同一深度桩壁温度,桩内外温度差引起温度应力,即在桩表面出现拉应力、桩中心出现压应力;但地面以上桩基部分出现了拉应力大于混凝土允许抗拉强度的状况,为此在桩顶处设置5 d、1℃的保温措施,温度应力明显改善,有效防止了桩基冻裂发生。研究成果可为类似工程设计及施工提供借鉴。
不同赋存温度环境下的各类型冻土材料热物理特性存在显著差异,开展高寒高海拔地区多年冻土抗侵彻特性研究时,能制备出满足温度控制要求的冻土靶体并揭示出靶体内冻结温度场的分布规律是后续开展大量侵彻模型试验最为基础而重要的工作。通过研究不同温度下温度场和水分场中热物理参数对冻土靶体制备的耦合影响,获取模型试验所需冻土靶体内部温度梯度分布规律,确定试验靶体达到设定温度时所需要的时间,阐述冻土抗侵彻试验靶体制备技术并对冻结粘土、冻结砂土、冻结粉土等3种典型冻土抗侵彻靶体的温度场进行了数值模拟。研究表明在同等条件下,粉土靶内部温度梯度达到一致所需要的时间最长,粘土靶次之,而砂土靶所需要的时间最短,为后续顺利开展冻土抗侵彻特性模型试验提供依据。
柱孔扩张作为典型的边值问题,可以用来分析冻土区的桩基工程在施工时土体受到径向压力时的应力和位移。在施工时随着孔内径向压力的增加,周围土体会逐渐由弹性状态转变为弹塑性状态,进而可将周围土体划分为弹性区和塑性区,其应力状态由不同的控制方程确定。现有的柱孔扩张模型适用于未冻土和岩石,其本构方程和强度准则仅与材料自身的力学特性有关,而冻土的柱孔扩张模型还与土体的温度分布有关。此外,冻土的强度准则还具有与未冻土明显不同的非线性特征,即随着平均应力的增大冻土的强度先增大而后会降低,通常呈现抛物线形式。本文模型基于适用于冻土的抛物线强度准则,同时考虑了温度分布对冻土力学特性的影响,使用了包含温度变量的热弹性本构方程对土体的应力状态进行分析。在计算塑性区的位移时,本文模型运用连续介质力学的运动方程推导了柱孔内侧位移的表达式。通过算例分析,可以发现弹塑性分界面上环向应力的不连续、塑性区的变形存在压硬性等,与冻土的实际力学特性相符合。当孔内温度变化,塑性区的范围和应力分布均会发生改变。本模型对冻土地区的原位土工试验、桩基础设计和施工有指导意义。
为了使多年冻土隧道围岩保持冻结状态,经常选择在隧道衬砌结构中铺设保温隔热层的方法以防止围岩产生冻融破坏。保温隔热层的厚度是影响多年冻土隧道结构的稳定性和工程经济的一个重要参数。针对这一问题,建立了考虑渗流和冰水相变的水-热耦合模型,并将该模型嵌入COMSOL Multiphysics数值软件中加以应用。以青海省某隧道为研究对象,对该隧道洞口段保温隔热层厚度的优化设计进行研究。结果表明:隧道仰拱位置被确定为优化设计的不利位置,隧道开挖在第1年的5月23日温度达到最高,被确定为优化设计的不利时间;不利位置处的最高温度随保温隔热层厚度的增加而下降,通过拟合公式计算出最优隔热层厚度为7.2 cm;在最优保温隔热层厚度下隧道衬砌背后围岩温度均处于0℃以下,不会产生冻融破坏。隧道在设计隔热结构时采用7.2 cm的隔热层厚度提高了围岩隧道结构的稳定性。
冻土在我国分布十分广泛,冻胀现象是冻土区经常出现的问题,其导致的工程病害屡见不鲜。冻胀主要是由土体内部温度变化及水分迁移造成的,是一类极其复杂的温度、渗流及应力多场耦合问题。通过对冻土中的温度场进行分析,求解含冰量及孔隙率随温度变化条件下的冻土一般性瞬态热传导方程,获得其近似解析解并应用于冻土热传导过程的预测。通过与有限元计算所得精确解对比,验证其有效性。研究成果对冻土冻胀问题的深入研究具有一定的理论和实践意义。
本文以某高速公路k369路段为研究对象,对该路段的地温和变形进行了监测,研究路堤内外温差变化对路基变形和路基稳定的影响,分析了路基的地温和变形特性及两者之间的相关性。从现场断面的病害出发,文中项目以冻土路基阴阳坡的能量平衡原理为基础,提出了机械通风管道对路基的不对称温度作用,最后,利用数值模拟方法,对该方法的处理效果进行了验证和分析。