考虑风速对涵洞温度场的影响,采用有限元数值方法对深季节冻土区涵洞温度场分布规律进行研究,并对类似地区涵洞防冻设计问题进行分析,得到以下结论:涵洞侧壁土体温度场以涵洞中心为轴线呈"倒钟"形分布,涵洞中心附近土体温度变化较剧烈;涵顶路基处填土温度沿涵顶到路基顶面先逐渐增大后逐渐减小,沿洞口向路基中心方向逐渐增大;风速对涵洞中心一定范围内土体的温度场影响较为显著;通过改变保温板布设位置和厚度得出不同条件下涵洞周围土体的温度分布规律,对比分析认为,保温板可起到良好的保温效果,保温板铺设位置、保温板厚度是分别影响涵顶、涵侧路基土体温度场的重要因素;保温板外置铺设改善了涵顶路基土体的双向冻结效应,8 cm厚保温板外置铺设的保温效果与10 cm厚保温板内置铺设的保温效果相差不大,建议深季节冻土区涵洞温度场保温设计采用8 cm厚保温板外置铺设方法较为经济合理。
为研究深季节冻土区堤防工程冻结期间内部温度和水分的变化规律,以热传导和水分迁移的多场耦合方程为理论依据,采用有限元方法模拟堤防工程在冻结期间的温度场、湿度场变化。研究结果表明:堤身温度剧烈波动区深度为6m;堤身温度的变化具有滞后性,并随深度增加而显著;堤身冻结过程中,冻结锋面处发生了由未冻区向已冻区的水分迁移;堤身的冻深略大于天然地层的冻深。
以深季节冻土区在建火渤铁路工程为依托,通过对涵洞温度场的现场监测,分析总结涵洞外侧和洞内温度场分布规律,测试结果表明:(1)涵洞外侧温度场分布曲线随季节变化呈近似正弦分布。(2)冬季低温时,涵洞顶部路基本体温度随深度的增加而逐渐升高,但均为负温,内外温差较小。(3)涵洞外壁温度场呈现出明显的阴阳坡效应,阳坡测点温度较阴坡大1.9℃左右。(4)涵洞洞内各测点温度相差不大,由于风流场作用,涵洞各截面较高温度测点均出现在涵洞涵角处,涵角温度高于其他测点1.2℃左右。测试分析结果可为深季节冻土区涵洞的设计与施工提供参考。
用透水土工布包裹道砟碎石填筑的截排水纵向盲沟,是哈尔滨-大连高速铁路(简称哈大高铁)在大开挖路堑段采用的重要的防冻胀工程措施.由于碎石层在顶部温度较低时,其中发生对流换热过程而强化对其下部土体的降温作用,可能导致盲沟底部冻结而影响其防冻胀效果.通过数值仿真软件分析了排水盲沟的温度状况,结果表明:对于哈大高铁的气温环境,在不考虑积雪影响的条件下,将发生盲沟底部排水管冻结积冰,影响纵向盲沟防冻胀效果的问题.在盲沟顶土层中加设0.1 m保温板能够提高盲沟底部的最低温度,推迟起始冻结时刻,缩短冻结时长,但不能完全避免盲沟底部排水管的冻结问题.在有表层保温板的条件下,在盲沟底部换填砂层虽然不能提高盲沟碎石层的温度,但却能有效提高盲沟底部的温度.复合措施可以有效解决盲沟底部冻结的问题.
季节冻土地区地表冻胀量极大值与北纬度和冻结指数的关系不能用随机正态分布规律来分析,它不是随机变量,不属数理统计范畴。通过分析认为,严寒气候条件下(北纬 5 3°以上和冻结指数超过 30 0 0度·日)深季节冻土区(包括多年冻土区内的融区)的冻结速率仍处在适合地基土冻胀的范围之内。因此,深季节冻土区地基土的冻胀性绝不可轻视。