近年来,青藏高原湖泊的快速扩张引起广泛关注,已有不少研究系统分析了大于1 km2的大型湖泊的变化动态,但对于面积较小的由于多年冻土退化形成的热融湖塘,其在大范围流域尺度上的分布及变化研究尚不多见。论文基于光学和雷达影像,系统分析了三江源区内湖塘(<1 km2)分布及其变化,以及与多年冻土之间的联系,并且首次揭示了湖塘底部融区的分布情况。结果表明:(1)三江源区2020年代(2020—2022年)的湖塘面积达917.03 km2,湖塘总数为61608个。其中长江源区湖塘数量最多,达到48987个,黄河源区12459个,澜沧江源区最少。(2)相较于1960年代,2020年代三江源区域面积小于1 km2湖塘数量增加了76%,面积增加了13%。长江源区湖塘扩张明显,黄河源区、澜沧江源区的部分湖塘萎缩。1960年代的湖塘有53%在2020年代依然存在。(3)三江源区80.9%的湖塘底部冬季存在融区,其中长江源有78.2%,黄河源有90.8%,澜沧江源有98.7%。在多年冻土区,有一半底部有融区的湖塘在1...
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...
溶解性有机碳(dissolved organic carbon,DOC)在全球碳循环过程中起着重要的作用。目前关于泛北极多年冻土区DOC的研究较多,青藏高原多年冻土区DOC的研究较少。为探讨青藏高原DOC的时空动态、来源,以及对气候变化和多年冻土退化的响应及其影响因素,以位于青藏高原长江源区内8个流域(直门达、沱沱河、雁石坪、风火山1~5)为研究区,通过对河流DOC观测、采样和分析,DOC输出通量计算,结合河流中δ13C-DOC同位素的特征、流域水文特征、植被覆盖率、冻土覆盖率等观测数据,分析河流DOC输出的季节性变化规律和来源。结果表明:长江源多年冻土区河流DOC浓度全年较低,平均浓度在1.91~3.69 mg·L-1之间,年内不同季节间变化率较小,上游DOC浓度大于下游DOC浓度。河流DOC的输出主要集中在夏、秋两季完全融化期,随径流量的增加而显著增加,而冬、春两季输出较少,DOC通量与径流量之间的相关系数达到0.92,与径流量的变化趋势一致。直门达水文站和风火山流域DOC年输出量分别为42 539.67 t和137.33 t,完全融化期...
作为长江、黄河、澜沧江的发源地,三江源区是我国重要的水源涵养区和生态屏障。在气候变化背景下,三江源区广泛分布的冻土显著退化,对植被变化与生态环境产生深远影响,但近20年植被变化特征及其对气候与冻土变化的响应尚不明晰。基于2001—2020年间三江源区植被、气象与土壤冻融数据集,分析了过去20年间三江源区植被物候变化特征及其对气候因子与土壤冻融要素变化的响应。结果表明:三江源区归一化植被指数(NDVI)整体呈东南高、西北低的空间格局,2001—2020年间三江源区植被整体呈变绿趋势,生长季NDVI以每10年0.017的速率显著增加;植被物候显著变化,生长季延长[6.3 d·(10a)-1],主要由生长季开始日期(SOS)提前[4.9 d·(10a)-1]贡献。基于统计分析结果,气温和降水是生长季NDVI最重要的主导因素,植被对降水的敏感性在气温相对较高、降水相对较少的暖干区域更强;生长季开始前的降水是SOS最重要的主导因素。土壤冻融变化对植被生长的影响具有空间异质性,在暖干区域,土壤融化时段延长对植被生长起到抑制作用。总体来看,三江源季节冻土区...
为探究怒江源区季节冻土的冻融特性,选取源区4个典型试验场5 cm表层土壤中发生的短历时冻融事件作为研究对象,明确事件内涵、提出事件具体判别方法并对事件发生的特性进行评价。评价内容由起止时间、总历时、总次数、循环频率、强度共5项组成。其中在强度评价,采用Copula函数法联合温差、湿差、历时3个单一指数构建更全面高效的综合指数,并针对冻结和冻融两个不同的过程分别进行评价。研究表明:怒江源区不同地理位置的短历时冻融事件特性具有差异,中海拔区(4 500~5 000 m.a.s.l.)的事件比低海拔区(5 000 m.a.s.l.)的事件呈现出总历时更长、总次数更多、循环频率更高、累加强度更大的特征规律;高频或高强的事件能够极大影响甚至破环土壤环境,对此更应注重怒江源区北部区域的冻融监测和防护;冻结和冻融是两个强度效应不同的过程,分别评价可避免强度被削弱的问题。研究成果有利于明晰高原寒区季节冻土冻结及融化的特性,进而体现短历时冻融事件的影响,为源区水土保持、冻胀与融塌危害防控提供支撑。
识别多年冻土区坡面土壤水分迁移过程是认识寒区产汇流过程的关键。同位素技术可在不破坏土壤原始结构情况下,最大限度获取水文过程信息。基于长江源多年冻土流域活动层融化期(融化深度100 cm左右)采集的典型坡面土壤水、地下水、降水和河水样品,分析不同水体的稳定同位素特征,探索土壤水分迁移规律。结果表明:研究区土壤水δ18O为-14.58‰~-1.58‰,均值为-8.25‰;δD为-103.88‰~-14.99‰,均值为-59.94‰;土壤水、河水和地下水同位素点均分布于局地大气降水线附近,表明降水为上述水体的主要来源;蒸发线的斜率和截距均小于局地大气降水线,其中地下水线(GWLE)的斜率最低,且地下水呈重稳定同位素富集现象,说明地下水受蒸发和混合效应的影响,在迁移转换过程中经历了一定程度的蒸发;根系层结构的复杂性使其土壤水的同位素值变幅最大,也存在重稳定同位素富集现象,其较低的氘盈余(d-excess)表明根系层经历了强烈的蒸发分馏过程;研究期除河水外其他水体随时间变幅较大;降水对于土壤水同位素的影响较小,而地下水和20~50 cm土壤水对河水的贡献占主导地位。本研究对...
多年冻土区有机碳对气候变暖存在迅速而强烈的响应和反馈。基于长江源多年冻土区40个采样点的120份土壤样品,分析土壤有机碳分布特征,并探讨其影响因素。结果表明,长江源多年冻土区土壤有机碳含量随土壤深度的增加而降低,0~10、10~20、20~30 cm层有机碳含量分别为8.00±4.95、7.65±5.21、7.28±5.00 g·kg-1;随海拔升高而增加,4400~4500、4500~4600、4600~4700、4700~4800、4800~4900、4900~5000、5000~5100、5100~5250 m的30 cm以内土壤平均有机碳含量分别为3.25±0.43、3.67±1.88、7.76±4.77、7.62±3.24、6.78±3.28、7.85±4.94、11.61±4.31、11.48±4.73 g·kg-1;随纬度增加而降低,33°~34°、34°~35°、35°~36°N的30 cm以内土壤平均有机碳含量分别为9.47±4.44、3.42±2.04、4.21±1.58 g·kg-1。研究区0~10...
利用长江源区典型流域观测数据,对冻土温度和湿度进行分析,结果表明土壤温湿度随埋深表现出不同的变化特征。浅层土温对气温响应快,时间上有明显昼夜变化,空间上向下传导有一定的滞后效应,垂向传导速率为3~4h/10cm;深层土温与气温相关性较弱。气温对土壤湿度的影响主要在于土温变化影响冻土冻融过程,在冻融期土壤湿度变化迅速。降水和蒸散发主要影响表层土壤以及下渗过程。分析发现在40~50cm左右有明显分层,上层土壤在暖季由于冻土溶解加上降雨增大水分迅速饱和成为饱和带,饱和湿度为0.4;下层则为非饱和带;而40cm正是当地植被根系的深度。在全球气候变化背景下,气温升高将引起土壤温度升高,冻土溶解期变长,从而引起流域水循环发生变化,对流域植被和生态环境也会产生影响。
以多年冻土为主要下垫面的寒区流域水资源对气候变化敏感,以长江源区为例,根据数字滤波法对直门达水文站1966-2015年月径流的基流分析结果,明确了长江源区径流及其不同成分的变化规律;进一步利用格兰杰因果检验和累积斜率法分别定性和定量地分析了降水和温度对径流组成的影响。结果表明:近50年来,长江源区总径流呈现增加趋势,2004年发生突变后年平均径流量增长36.49亿m3,基流和地表径流各贡献了50%;近50年持续地增温是引起径流变化的格兰杰原因,更有助于对河道径流成分变化的预测分析;对比径流突变前后,增温不仅改变降水形式,影响了地表产流,同时也改变了下渗后土壤水的冻融过程,对基流和地表径流改变的贡献率分别为90%和76%、高于降水变化68%和57%的贡献率。气候变化背景下,持续的增温对降水产流和下渗过程的影响,是多年冻土区流域径流成分变化的主要原因。
基于长江源区冬克玛底流域2017年6~9月采集的84个地下水样品,分析了地下水稳定同位素特征及其影响因素,讨论了地下水的补给来源.结果表明,研究区多年冻土区地下水δ18O的变化范围为-15. 3‰~-12. 5‰,平均值为-14. 0‰;δD的变化范围为-108. 9‰~-91. 7‰,平均值为-100. 2‰,与当地大气降水相比,地下水较为富集重同位素;地下水线(LG)的斜率和截距均低于全球和局地大气降水线(GMWL和LMWL),表明地下水在接受降水的补给后经历了不同程度的蒸发作用;地下水氘盈余(d-excess)变化范围为4. 9‰~25. 0‰,平均值为11. 6‰,低于大气降水平均氘盈余值;地下水同位素与降水量存在显著的负相关关系,表明大气降水对地下水具有重要的补给作用;不同时期影响地下水同位素的组成和变化因素有所不同,在冻土的冻融前期(气温上升阶段),由于冻土活动层较薄,地下水受气温影响显著.虽然后期气温降低,但冻土活动层厚度依然在增加,此时地下水在土壤中滞留的时间的增加是地下水同位素富集的一个重要因素.结合流域的地形特点、地下水同位素特征及其影响因素,...