在全球变暖的背景下,青藏高原地区的降雨量呈增加趋势。降雨改变了水分边界条件,为明确水分边界对冻土路基水热过程的影响程度,基于传热理论与非饱和土渗流理论,建立了包含水分迁移、相变的水热耦合模型。将综合考虑降雨与蒸发的水分边界引入模型,并与无水分边界下的含水量、温度及其通量的变化规律进行对比。结果表明:暖季忽略水分边界将低估含水量、高估土体温度;引入水分边界后,暖季路基浅层土体液态水含量在0.06~0.11 m3/m3波动,较无水分边界时可增大36.14%;雨水感热与蒸发潜热使地表能量再分配,减小了热传导通量,最终表现为路基浅层土体的暖季平均温度较无水分边界时最大可降低0.75℃。
多年冻土地区的地下水系统中的冻结层上水不仅是寒区能水循环中的一个关键组成部分,而且与寒区生态环境变化关系密切,在寒区水文学和寒区陆面过程研究中具有十分重要的作用,但因其动态过程的复杂性和观测研究的诸多困难,尚缺乏对其运动规律、驱动因素与机制的系统认知.在青藏高原连续多年冻土区风火山左冒西孔曲,选择典型高寒草甸坡面,通过2年坡上和坡下不同观测孔地下水动态连续观测,分析了冻结层上水的季节动态变化及其在坡面上的空间分异规律以及活动层的冻融作用对冻结层上水动态变化的影响作用.结果表明,冻结层上水位的季节动态变化具有与活动层土壤温度和水分相似的冻融过程,活动层土壤温度控制了冻结层上水季节动态格局,深层(60 cm以下)土壤水分和不同地带地下水补给来源决定了冻结层上水水位动态变化的位相和幅度.地温与水位动态之间具有显著的Boltzmann函数关系,但在不同活动层深度与不同坡面位置,土壤温度对地下水位动态影响的阈值范围不同,坡面上冻结层上水位动态具有显著的空间变异性.地表覆盖变化和气候变暖将必然引起冻结层上水动态、地下水与河水间水力关系的变化,从而引起流域整体水文过程的改变.