湖泊富营养化是目前公众和政府关注的热点问题之一,以往研究多集中在入湖的地表污水处理和农业灌溉排水污染物的拦截与阻滞等方面,严重忽视了地下水对湖泊富营养化的贡献。热红外遥感技术被广泛应用于识别入湖地下水排泄区,但传统的热红外遥感法并未考虑冻结湖泊表面覆盖的积雪和冰层对反演湖水表面温度精度的影响,限制了其精度和适用性。以东北季节性冻土平原区典型湖泊查干湖为研究对象,通过构建基于MODIS反演湖水表面温度的GA-SVR机器学习模型,将冰封期热红外遥感法反演湖水表面温度的R2由0.69提高到0.95,提高了入湖地下水排泄区的识别精度,并以222Rn浓度的空间分布特征来验证GA-SVR模型识别地下水排泄区结果的可靠性,从而为有效识别查干湖营养物质主要来源和支撑查干湖水环境安全管控提供科技支撑。
冻土-结构物界面力学行为是工程设计的重要依据,界面的力学性能受应力状态的影响。为了探究三维应力对界面力学特性的影响,开展-5℃下不同围压、粗糙度和含水率的冻土-钢三轴剪切试验,分析冻土-钢界面力学特性和抗剪强度参数指标;设计不同因素的正交试验,对各因素进行显著性分析。结果表明:含水率和粗糙度对界面抗剪强度的影响均呈先增后减的趋势,围压与界面抗剪强度呈正相关;含水率低于最优含水率时,应力-应变曲线为强应变软化型,高于最优含水率时,应力-应变曲线为弱应变软化型;冻土-钢界面抗剪强度影响因素由强到弱依次为:含水率、温度、粗糙度和围压。基于损伤力学模型,给出了考虑围压、粗糙度和含水率影响的冻土-钢界面损伤力学模型,该模型可以较好描述峰值强度前的剪应力-位移关系。研究结果可为明晰冻土与结构物界面的极限承载力提供参考。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
【目标】随着多年冻土区路基工程建设活动增加,形成了大量路堑边坡,因此有必要对冻融作用下多年冻土区路堑边坡的稳定性进行分析。【方法】针对其随机性、小样本、非线性等特点,利用支持向量机、随机森林和梯度提升3种算法构建基础模型,并采用Voting集成学习技术将它们组合,构建了4个多年冻土区路堑边坡安全系数预测模型。【数据】为了反映冻土区边坡的特殊性,引入了活动层厚度和冻融损伤系数,并结合了普通边坡稳定性影响中的4个关键指标(边坡坡度、土体重度、黏聚力和内摩擦角),确定了6个输入指标。利用25组数据对4个预测模型进行了训练和测试,并采用最小均方误差评价了模型预测效果。【结果】支持向量机模型的最大相对误差为9.61%,随机森林模型的最大相对误差为―6.23%,梯度提升模型的最大相对误差为4.44%,而Voting集成学习模型的预测值与实测值最大相对误差为―0.51%。相对于单一预测方法,Voting集成学习模型能够更加准确地预测边坡安全系数变化趋势。【应用】Voting集成模型可以更好地描述边坡稳定性与其影响因素之间的非线性关系,更适于实际工程应用。研究成果为多年冻土区路堑边坡稳定性评价提供了一...
为准确客观地评估多年冻土公路路基稳定性,构建了以冻土特性、地质环境、气候条件和工程状况为准则层,包含12个指标的评价体系。选取7个区间的多年冻土公路路基作为样本,通过G1法和熵权法分别计算各指标的主、客观权重,并采用博弈论方法确定各评价指标的综合权重。通过物元变换构建了冻土公路路基稳定性等级的物元体系,计算各指标的关联度。将博弈论组合赋权和物元可拓模型相结合,构建了一种新型的多年冻土公路路基稳定性评估模型,对7个区间多年冻土公路路基的稳定性进行评估。结果表明:年平均地温、工程措施、路基高度、年平均气温和含冰量是影响冻土稳定性最主要的因素;基于博弈论组合赋权和物元可拓模型的多年冻土公路路基稳定性评价方法,克服了G1法赋权中主观随意性带来的偏差,同时也避免了熵权法过于依赖指标数据而忽略指标重要性的问题,这使得多年冻土路基稳定性评估中的指标权重更加科学合理;评价结果与实际路基的变形监测数据吻合度较高,验证了该模型的科学性和有效性。
土壤热状态是指示多年冻土存在及其热稳定性的最关键指标。为探究黄河源头区冻土热状态的较长期变化,首先构建了土壤热传导数学模型并基于HYDRUS-1D模型求解,经参数率定验证,表明该模型具有较好的可靠性和适用性,然后利用中国区域地面气象要素驱动数据集(CMFD)驱动模拟了黄河源头区6个钻孔1979—2018年冻土地温的变化。结果表明,黄河源头区冻土热状态在1999年发生转变:1999年前温度变化速率为-0.037~0.026°C/a,1999年后升温速率为0.006~0.120°C/a。分析表明1998年的气候变暖突变及1999年的极端气候灾害突变是黄河源头区冻土地温在1999年发生突变的主要原因;冻土地温升高,冻土热稳定性下降,将深刻影响冻土水源涵养功能。该研究可厘清高原冻土对气候变化的响应规律,为加强黄河源头区生态环境分区管控提供科技支撑。
以大兴安岭呼中典型冻土区为研究对象,研究表层(0~15、15~30 cm)土壤碳储量空间分布规律。通过野外调查、采样和室内分析,基于Landsat 8 OLI影像,利用随机森林(RF)算法建模,分析大兴安岭冻土区表层土壤有机碳空间分布状况。在13个遥感变量因子中筛选相关性最高变量,确定海拔、ARVI、VIGreen、EVI、OSAVI、NDVI,6个环境变量相关性最高,可作为自变量。结果表明,当节点分裂次数(leaf)值为5,决策树数量(trees)值为900时,预测模型的训练集和测试集最为接近,表明此时的模型稳定性最好,0~15、15~30 cm土层训练集R2的拟合精度分别为0.23、0.43,测试集R2的拟合精度分别为0.35、0.24。以此参数预测表层(0~15、15~30 cm)土壤碳储量空间土壤碳空间分布状况分布特征,0~15和15~30 cm土壤碳密度平均值为7.40 kg/m2和14.80 kg/m2,0~15 cm土层土壤碳储量分布大致为由南向北逐渐增加,15~30 cm土层土壤碳储...
主要介绍冻胀的防御措施以及应用效果,对比光伏支架基础经济性和适用性等优劣势,从而总结地基土壤改良方式、桩基础埋深、柔性材料隔离及新型斜面基础防治措施,科学施策,获得抗冻胀效果显著的方法,例如保温法、涂敷法、套管法及钢管螺旋桩等,有利于减少季节性冻土对光伏支架设备的干扰,提供解决冻胀防治新技术和措施。
冻胀荷载作用下初始裂纹的形成、扩展导致衬砌结构的断裂是寒区衬砌渠道冻害的主要原因之一。在已有研究基础上,综合考虑地下水水位影响的梯形渠道冻胀力学分析方法及线弹性断裂力学理论,提出高地下水水位梯形渠道冻胀断裂力学分析框架。该模型将衬砌结构表面初始裂纹的失稳扩展及开裂破坏简化为Ⅰ型断裂力学问题,并提出应力强度因子与危险截面位置的计算方法。以塔里木灌区某梯形渠道为原型分析地下水埋深w对衬砌各截面应力强度因子KFⅠ(x)及合理板厚dr的影响规律。结果表明:地下水补给条件对KFⅠ(x)的大小影响显著;当w减小时,KFⅠ(x)呈非线性增大,此时渠道冻害风险也增大,与事实相符。地下水埋深越浅,保证结构安全所需衬砌板的合理厚度dr越大;当地下水埋深为3.0 m时,建议使用的合理板厚为9.0 cm。研究结果可为寒区渠道的抗冻胀设计提供科学依据。
为研究多年冻土区铁路桥梁桩基础在竖向荷载作用下的承载性能及荷载传递机理,以多年冻土区广泛存在的高桩承台基础为研究对象,通过室内缩尺模型试验结合有限元方法分析桩基础几何尺寸和多年冻土温度对桩基础竖向承载性能的影响。结果表明:增加桩长能减小桩基础的沉降量并提高桩基础的极限承载力,桩长从1.5 m增至3.0 m过程中,每增加0.5 m,桩基础极限承载力分别增加41%,23%和15%,且能够减小桩基础端承力及其占比,但对桩基础的轴力、桩身应力和侧摩阻力的分布规律影响较小;多年冻土的存在对桩基础承载性能的提升更为显著,其中侧摩阻力发挥重要作用,且多年冻土的温度越低,其提升效果越明显,在多年冻土层温度为-5和-9℃时,桩基础的极限承载力分别为125.9和199.5 kN,相较于融土条件分别提升了2.98和5.31倍;桩基础在多年冻土层中的最大侧摩阻力分别约为300和500 kPa,是上部融土层的2.1和3.5倍;在上部融土层和多年冻土层的交界处桩身轴力、侧摩阻力、土体应力均发生明显变化。