为了深入研究多年冻土地区铁路桥梁桩基础设计,基于多年冻土地区铁路桥梁桩基础承载力计算理论,分析实际工程中桩基础与多年冻土的相对位置不同情况下设计注意事项。一般冻土层厚度与桩基础有4种相对位置关系,表层季节融化层厚度决定桥梁承台的埋置原则。当多年冻土天然上限较高时,承台底埋置于人为上限之下≮0.25m,桩周阻力根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供;当天然上限较低时,为了降低承台基坑开挖对地下多年冻土的扰动及减少工程投资,承台底面应上抬至地面之上≮0.3m,桩周阻力亦根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供,这种情况下,季节融化层夏季融沉产生的负摩阻力对桩长的影响不可忽略。另外,多年冻土地区桥梁桩基设计需要采取一定措施如设置永久钢护筒、涂抹沥青渣油、回填卵砾石土等方法来降低后期病害。
为了深入研究多年冻土地区铁路桥梁桩基础设计,基于多年冻土地区铁路桥梁桩基础承载力计算理论,分析实际工程中桩基础与多年冻土的相对位置不同情况下设计注意事项。一般冻土层厚度与桩基础有4种相对位置关系,表层季节融化层厚度决定桥梁承台的埋置原则。当多年冻土天然上限较高时,承台底埋置于人为上限之下≮0.25m,桩周阻力根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供;当天然上限较低时,为了降低承台基坑开挖对地下多年冻土的扰动及减少工程投资,承台底面应上抬至地面之上≮0.3m,桩周阻力亦根据多年冻土厚度分别由冻结力提供或冻结力与摩阻力共同提供,这种情况下,季节融化层夏季融沉产生的负摩阻力对桩长的影响不可忽略。另外,多年冻土地区桥梁桩基设计需要采取一定措施如设置永久钢护筒、涂抹沥青渣油、回填卵砾石土等方法来降低后期病害。
探究多年冻土区桩侧冻土含冰量差异对桩基础承载性能的影响,不仅有助于冻土区桩基础的设计施工,而且对桩基础变形防控有重要指导意义。利用ABAQUS有限元软件,模拟计算桩侧不同含冰量分布模式下桩基础的荷载传递和承载力。桩侧含冰量分布模式设置为:倒梯形(含冰量沿桩深减小)、灯笼形(含冰量沿桩深先增大再减弱)和正梯形(含冰量沿桩深增大)。结果表明:尽管桩侧总体含冰量相同,桩基础的承载性能受桩侧土体的含冰量影响显著。取荷载为26 MN进行分析,倒梯形、灯笼形及正梯形工况对应位移依次为0.026 m、0.030 m及0.032 m;在相同荷载下,桩侧土体含冰量倒梯形分布时的桩顶沉降要小于正梯形分布时的沉降,而灯笼形分布情况介于二者之间;桩侧摩阻力整体呈现上大下小的趋势。研究成果可为寒区基础工程设计与施工提供理论参考。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
以中国青藏高原为代表的高寒高烈度地区,由冻融循环作用导致的材料性能劣化和气候变暖导致的多年冻土退化问题日益严峻,给桥梁桩基础抗震性能评估带来巨大挑战。为系统研究多年冻土退化以及材料冻融劣化对桥梁桩基础抗震性能的影响,确保其合理的抗震设计,该文建立考虑多年冻土退化和材料冻融劣化的桩-冻土相互作用有限元模型,对比分析了不同因素对多年冻土区桥梁桩基础抗震性能的影响机制。研究结果表明:随着桥梁服役时间的增加,桩-冻土体系的水平承载力、等效刚度和耗能能力均呈下降趋势;多年冻土退化与材料冻融劣化的叠加效应对桩基础抗震性能的影响更显著,具体表现为在桥梁服役100年时,桩-冻土体系的水平承载力降至初始值的55%左右,但仅考虑多年冻土退化时,其水平承载力降至初始值的89%左右。因此,如果忽略材料冻融劣化的影响,会导致桥梁桩基础抗震性能评估结果偏不安全。在多年冻土区桥梁桩基础的抗震性能分析中,除了考虑多年冻土退化的影响,还必须充分考虑材料冻融劣化的影响。
桩侧土体的性质与分布、桩体长径比是影响桩基础荷载传递规律的主要因素。桩周土体强度高、塑性强,且受含冰量和温度的直接控制,是冻土区桩基础的独有特征。充分理解冻土区桩基础的荷载传递规律及影响因素,不仅有助于冻土区基础工程的设计施工,而且对桩基础变形防控有重要指导意义。利用界面库仑摩擦模型和可以反映土壤塑性的Drucker—Prager准则,模拟计算了不同条件下冻土桩基础的荷载传递过程和承载力变化。结果表明,冻土区桩基础的荷载~位移曲线分为线性段、加速段、破坏段;降低土体温度、减小桩径可以降低线性段的变形斜率,提高极限荷载;而增加桩长会增大极限荷载,但不会显著影响线性段的变形斜率。总体而言,侧摩阻力在线性变形段呈R形分布并由上向下逐步发挥,在极限荷载后呈现正梯形分布;温度越低,桩径越小,桩越长,则桩侧中下部侧摩阻的滞后效应就越显著;桩侧土体热力性质的差异及分布,扩大了侧摩阻力分布的异化特性;桩侧上部土体温度越低,越有利于冻土桩基础的承载性能。
桩侧土体的性质与分布、桩体长径比是影响桩基础荷载传递规律的主要因素。桩周土体强度高、塑性强,且受含冰量和温度的直接控制,是冻土区桩基础的独有特征。充分理解冻土区桩基础的荷载传递规律及影响因素,不仅有助于冻土区基础工程的设计施工,而且对桩基础变形防控有重要指导意义。利用界面库仑摩擦模型和可以反映土壤塑性的Drucker—Prager准则,模拟计算了不同条件下冻土桩基础的荷载传递过程和承载力变化。结果表明,冻土区桩基础的荷载~位移曲线分为线性段、加速段、破坏段;降低土体温度、减小桩径可以降低线性段的变形斜率,提高极限荷载;而增加桩长会增大极限荷载,但不会显著影响线性段的变形斜率。总体而言,侧摩阻力在线性变形段呈R形分布并由上向下逐步发挥,在极限荷载后呈现正梯形分布;温度越低,桩径越小,桩越长,则桩侧中下部侧摩阻的滞后效应就越显著;桩侧土体热力性质的差异及分布,扩大了侧摩阻力分布的异化特性;桩侧上部土体温度越低,越有利于冻土桩基础的承载性能。
基于静钻根植桩结构特点,利用ABAQUS建立三维有限元模型,开展静钻根植桩在冻土区的桩基承载特性数值模拟研究,分析竖向荷载下桩基荷载传递机理,讨论桩周冻土温度、桩周水泥土厚度和水泥土黏聚力对竖向承载特性的影响。结果表明,水泥土外壳是桩基承载力的关键,其竖向应力变化复杂;水泥土扩大头底部竖向应力较顶部增大了43%左右;竹节上下部位会发生应力突变,水泥土外壳竹节凹陷处下部较上部应力平均增大27.5%。桩周冻土常温与负温条件下桩基承载特性具有一定差异;桩周水泥土厚度应介于100 mm到0.5倍预制芯桩桩径之间;水泥土黏聚力在300 MPa左右对桩基承载力最有利。
近年来全球升温明显,多年冻土退化趋势显著。为研究多年冻土退化对桩基础竖向承载力的影响规律,建立了考虑多年冻土退化效应的桩基础有限元模型,分析了多年冻土区季节活动层厚度的改变对桩基础竖向承载力的影响规律。结果表明,随着季节活动层厚度的增加,桩基础的竖向极限承载力呈现减小的变化趋势;不同季节活动层厚度工况下桩基础的最大应力均出现在桩头位置,最小应力均出现在桩底位置,并且随着荷载的增大,桩基础最大应力出现的区域呈现出由桩头位置逐渐向桩底位置扩大的趋势;当季节活动层厚度相同时,随着荷载的增加,土体应力整体呈增大的趋势,且最大应力出现位置均呈现出随着荷载的增大从桩身周围土体向桩底土体转移的趋势。
近年来全球升温明显,多年冻土退化趋势显著。为研究多年冻土退化对桩基础竖向承载力的影响规律,建立了考虑多年冻土退化效应的桩基础有限元模型,分析了多年冻土区季节活动层厚度的改变对桩基础竖向承载力的影响规律。结果表明,随着季节活动层厚度的增加,桩基础的竖向极限承载力呈现减小的变化趋势;不同季节活动层厚度工况下桩基础的最大应力均出现在桩头位置,最小应力均出现在桩底位置,并且随着荷载的增大,桩基础最大应力出现的区域呈现出由桩头位置逐渐向桩底位置扩大的趋势;当季节活动层厚度相同时,随着荷载的增加,土体应力整体呈增大的趋势,且最大应力出现位置均呈现出随着荷载的增大从桩身周围土体向桩底土体转移的趋势。