全球气候变暖导致多年冻土层温度升高,进而显著改变桩周土体的物理和力学性质,这对铁路桥梁桩基础的竖向承载特性产生了深远影响。为量化分析多年冻土层对既有铁路桥梁桩基础竖向承载特性的影响,以青藏铁路桥梁广泛使用的高承台桩基础为研究对象,通过室内缩尺模型试验对比研究了竖向荷载作用下非冻土(对比组)与多年冻土(多年冻土层厚度为140 cm)条件下桩基础承载性能及桩周土体的破坏特征。试验结果表明:在非冻土条件下,桩周土体表面出现近似矩形的闭合裂缝,且从矩形四角向外延伸,0.5倍桩径以内的土体出现明显沉陷,土体表面仅有一条主裂缝;当有多年冻土层存在时,桩周土体虽然出现未闭合近似矩形裂缝,但表层土未发生明显沉降。此外,多年冻土层的存在显著提高了桩基础竖向极限承载力,多年冻土条件下桩基础的极限承载力约为非冻土条件下的4.5倍。分析发现,桩基础承载力的提升主要源于多年冻土层中桩侧摩阻力的显著增加,多年冻土层存在时最大桩侧摩阻力约为非冻土条件下的7.1倍。相对而言,多年冻土层对桩基础端承力的影响并不明显,多年冻土条件下桩基础最大端承力相较于非冻土条件提高了8.8%。因此,多年冻土区既有铁路桥梁桩基础承载性能...
全球气候变暖导致多年冻土层温度升高,进而显著改变桩周土体的物理和力学性质,这对铁路桥梁桩基础的竖向承载特性产生了深远影响。为量化分析多年冻土层对既有铁路桥梁桩基础竖向承载特性的影响,以青藏铁路桥梁广泛使用的高承台桩基础为研究对象,通过室内缩尺模型试验对比研究了竖向荷载作用下非冻土(对比组)与多年冻土(多年冻土层厚度为140 cm)条件下桩基础承载性能及桩周土体的破坏特征。试验结果表明:在非冻土条件下,桩周土体表面出现近似矩形的闭合裂缝,且从矩形四角向外延伸,0.5倍桩径以内的土体出现明显沉陷,土体表面仅有一条主裂缝;当有多年冻土层存在时,桩周土体虽然出现未闭合近似矩形裂缝,但表层土未发生明显沉降。此外,多年冻土层的存在显著提高了桩基础竖向极限承载力,多年冻土条件下桩基础的极限承载力约为非冻土条件下的4.5倍。分析发现,桩基础承载力的提升主要源于多年冻土层中桩侧摩阻力的显著增加,多年冻土层存在时最大桩侧摩阻力约为非冻土条件下的7.1倍。相对而言,多年冻土层对桩基础端承力的影响并不明显,多年冻土条件下桩基础最大端承力相较于非冻土条件提高了8.8%。因此,多年冻土区既有铁路桥梁桩基础承载性能...
在季节性冻土区,气候因素引起的土体季节性冻融对桩基础的水平承载影响显著,在地震等水平荷载作用下桩基础极易发生断桩等脆性破坏。为消除或减弱季节性冻融对桩基的影响,文中采用抗冻融且高阻尼的橡胶-砂胶结材料置换桩周表层土体,改善桩基的水平承载特性;结合美国阿拉斯加地区某实际工程桩,对季节性冻土区进行温度场模拟,建立桩-土相互作用有限元模型,对比分析置换前后桩基础的受力与变形,并对置换范围进行优化,得到最佳置换宽度和置换深度分别为1.0d、6.0d(d为桩基直径)。
采用计算流体动力学(Computational Fluid Dynamics, CFD)方法,对典型桥梁断面上的雪飘移进行了数值模拟,得到桥面上风致积雪的重分布。为验证该文数值模拟方法的正确性,以平屋面风吹雪为案例,将该文数值模拟方法得到的结果与风洞试验结果进行了对比。在桥面雪飘移的数值模拟过程中,考虑了桥梁护栏的影响,对比分析了不同护栏透风率下桥面风致积雪重分布形式。研究发现:当护栏透风率大于50%时,桥面上不会出现显著的积雪沉积;当护栏透风率小于50%时,桥面护栏附近出现了较显著的积雪沉积,且在迎风端护栏的背风侧沉积最大。为减小桥面风致积雪堆积对交通的不利影响,建议在桥梁设计时采用高透风率的护栏。
混凝土结构桥梁在我国桥梁工程中占有很大的比重,由于混凝土本身的多孔结构,容易受自然环境的影响产生病害。对寒冷地区混凝土桥梁发生冻融破坏、盐冻破坏的原因进行了分析,对混凝土桥梁桥面伸缩缝、泄水孔、防撞墙病害提出修复措施。对常用的几种混凝土防腐涂层体系进行了试验研究,结果表明:溶剂型环氧-溶剂型环氧-氟碳面漆的涂层体系对混凝土结构的耐久性提升更好。
结合高寒地区混凝土梁桥的常见病害,分析了其产生机制,阐述了高寒地区混凝土梁桥的耐久性设计要点,提出了针对高寒地区混凝土梁桥的施工建议,以期进一步提升桥梁结构的安全性,为相关工程提供参考。
受到周期性潮汐变化的影响,中国寒区近海混凝土桥梁长期遭受海水冻融及多种耦合腐蚀作用,这严重影响了桥梁的服役性能与使用寿命。为了准确预测桥梁的性能衰退规律,针对桥梁所处环境,分析了桥梁结构的性能退化机理,并借助近场动力学方法在多尺度方面的优势,利用MATLAB-ABAQUS联合仿真方法建立了桥梁劣化损伤预测与评估方法。在此基础上,从混凝土海水冻融损伤出发,考虑温度分布特性、临界饱和度模型、孔隙结晶规律与孔隙压力理论,结合不同孔隙的结晶温度与孔隙累积,通过孔隙变形加载方式建立混凝土微观尺度的冻融循环数值模拟计算方法。随后,根据混凝土微观尺度冻融损伤的计算结果,建立考虑冻融损伤分布的RC桥墩等效数值模拟计算方法。最终,设计制作了RC桥墩节段,进行了海水环境下RC桥墩的冻融循环试验,并利用超声层析成像技术,得到RC桥墩的海水冻融损伤分布。试验与计算结果表明:通过与超声层析成像试验结果的对比,混凝土微观尺度计算模型可以很好地模拟冻融循环过程中孔隙累积与孔隙转化引起的混凝土冻融损伤行为;受到温度分布与相对饱和度的影响,当冻融大于50次后,试件出现明显的冻融损伤界限(冻融深度),且随着冻融次数的增加...
基于正交试验,研究了引气量、用水量和水胶比等对C30混凝土(承台)、C40混凝土(桥面板)和C50混凝土(桥梁主塔)盐冻性能的影响规律并结合试验结果提出高寒地区桥梁混凝土配合比设计参考值。试验结果表明:用水量与引气量是影响桥梁混凝土盐冻性能的关键因素。其中,用水量从153 kg/m3缩减至141 kg/m3,桥面板C40混凝土剥蚀量下降13%,经过300次冻融之后只有20%的其抗弯拉强度损失率;引气量处于4.5%~5.0%范围内时,经过300次冻融循环后,主塔C50混凝土的动弹模量相对值仍大于86%。
以室内试验为基础,同时结合现场监测数据,对北方冻土地区的桥梁桩基混凝土施工质量控制进行了详细的分析。结果表明:在低温环境下,温度、外加剂、矿物掺合料以及水胶比等对混凝土的初凝、终凝时间有着重要的影响;桩侧温度可分为"小幅降温,快速升温,迅速降温以及缓慢降温"4个阶段,故建议桥梁墩台施工应在桩基浇筑45 d后进行。根据研究成果,提出了冻土地区桥梁桩基混凝土配制和施工的注意事项。
我国幅员辽阔,桥梁工程涉及到的自然环境和地质条件多样,由此也形成了相关工程建设的不同技术难点。其中冻土区域施工常会导致因类型不同以及季节影响而导致桥梁或建(构)筑物的基础稳定和承载及变形问题。针对这些问题,为保证桥梁结构的稳定性,本文从桥梁桩基础的分类、单桩轴向荷载的传递机理入手,阐述了冻土区桥梁单桩基础地基回冻过程研究的意义,并分析了冻土区桥梁桩基础工程回冻过程对单桩承载力和桥梁施工的影响,提出了相关施工的关键技术和工艺,希望能对冻土区桥梁工程的设计、施工提供一些参考。