每年消融期,冰前河网在格陵兰北部发育并汇流大量冰面融水进入海洋,是连接冰盖与海洋的重要通道。然而,目前格陵兰北部冰前河网的空间分布与形态特征尚不明晰。研究综合10 m空间分辨率Sentinel-2卫星遥感影像和Copernicus DEM等数据,采用汇流过程约束的水体遥感信息提取方法,精细化提取了2020年消融期格陵兰北部(~100132 km2)冰前水体遥感信息,进一步顾及水体形态特征区分了冰前河网与孤立湖泊,再利用DEM排水网络连通冰前河网,生成了一套10 m空间分辨率的连通冰前河网与孤立湖泊CPRNs&ILs (Continuous Proglacial River Networks and Isolated Lakes)遥感数据集。随后,选择5个验证区对比分析了CPRNs&ILs与4种水体遥感数据集(Dynamic World V1,CALC-2020,Esri Land Cover和ESA WorldCover)的河网提取精度,最后量化分析了冰前河网的空间分布与形态特征。结果表明:(1)顾及水体形态特征的划分方法准确提取并划分了冰前河网与...
每年消融期,冰前河网在格陵兰北部发育并汇流大量冰面融水进入海洋,是连接冰盖与海洋的重要通道。然而,目前格陵兰北部冰前河网的空间分布与形态特征尚不明晰。研究综合10 m空间分辨率Sentinel-2卫星遥感影像和Copernicus DEM等数据,采用汇流过程约束的水体遥感信息提取方法,精细化提取了2020年消融期格陵兰北部(~100132 km2)冰前水体遥感信息,进一步顾及水体形态特征区分了冰前河网与孤立湖泊,再利用DEM排水网络连通冰前河网,生成了一套10 m空间分辨率的连通冰前河网与孤立湖泊CPRNs&ILs (Continuous Proglacial River Networks and Isolated Lakes)遥感数据集。随后,选择5个验证区对比分析了CPRNs&ILs与4种水体遥感数据集(Dynamic World V1,CALC-2020,Esri Land Cover和ESA WorldCover)的河网提取精度,最后量化分析了冰前河网的空间分布与形态特征。结果表明:(1)顾及水体形态特征的划分方法准确提取并划分了冰前河网与...
每年消融期,冰前河网在格陵兰北部发育并汇流大量冰面融水进入海洋,是连接冰盖与海洋的重要通道。然而,目前格陵兰北部冰前河网的空间分布与形态特征尚不明晰。研究综合10 m空间分辨率Sentinel-2卫星遥感影像和Copernicus DEM等数据,采用汇流过程约束的水体遥感信息提取方法,精细化提取了2020年消融期格陵兰北部(~100132 km2)冰前水体遥感信息,进一步顾及水体形态特征区分了冰前河网与孤立湖泊,再利用DEM排水网络连通冰前河网,生成了一套10 m空间分辨率的连通冰前河网与孤立湖泊CPRNs&ILs (Continuous Proglacial River Networks and Isolated Lakes)遥感数据集。随后,选择5个验证区对比分析了CPRNs&ILs与4种水体遥感数据集(Dynamic World V1,CALC-2020,Esri Land Cover和ESA WorldCover)的河网提取精度,最后量化分析了冰前河网的空间分布与形态特征。结果表明:(1)顾及水体形态特征的划分方法准确提取并划分了冰前河网与...
为探究格陵兰冰盖的长期演化历史及其与气候系统之间的耦合联动关系,国际大洋发现计划400航次在巴芬湾海域毗邻格陵兰冰盖西北部的陆坡/架区钻取了一系列深海沉积岩芯样品。利用航次期间完成古地磁测试后的少量样品剩余(每个约6~10 g),初步测试了其中的长链烯酮和和正构烷烃组分,并结合船上获得的古地磁和生物地层学证据约束的初步年代框架,尝试分析了上述有机地球化学指标重建北大西洋高纬度海区水体温度信号的可行性。研究结果显示:尽管个别样品中长链烯酮含量偏低,但温度信号基本可靠。据此推测增加(如:约20 g)全岩样品基本可以实现常规有机地球化学指标的实验室分析,为后续申请该航次岩芯的高分辨率样品以深入探究格陵兰冰盖演化与海洋关键过程积累了宝贵的经验。
为探究格陵兰冰盖的长期演化历史及其与气候系统之间的耦合联动关系,国际大洋发现计划400航次在巴芬湾海域毗邻格陵兰冰盖西北部的陆坡/架区钻取了一系列深海沉积岩芯样品。利用航次期间完成古地磁测试后的少量样品剩余(每个约6~10 g),初步测试了其中的长链烯酮和和正构烷烃组分,并结合船上获得的古地磁和生物地层学证据约束的初步年代框架,尝试分析了上述有机地球化学指标重建北大西洋高纬度海区水体温度信号的可行性。研究结果显示:尽管个别样品中长链烯酮含量偏低,但温度信号基本可靠。据此推测增加(如:约20 g)全岩样品基本可以实现常规有机地球化学指标的实验室分析,为后续申请该航次岩芯的高分辨率样品以深入探究格陵兰冰盖演化与海洋关键过程积累了宝贵的经验。
为探究格陵兰冰盖的长期演化历史及其与气候系统之间的耦合联动关系,国际大洋发现计划400航次在巴芬湾海域毗邻格陵兰冰盖西北部的陆坡/架区钻取了一系列深海沉积岩芯样品。利用航次期间完成古地磁测试后的少量样品剩余(每个约6~10 g),初步测试了其中的长链烯酮和和正构烷烃组分,并结合船上获得的古地磁和生物地层学证据约束的初步年代框架,尝试分析了上述有机地球化学指标重建北大西洋高纬度海区水体温度信号的可行性。研究结果显示:尽管个别样品中长链烯酮含量偏低,但温度信号基本可靠。据此推测增加(如:约20 g)全岩样品基本可以实现常规有机地球化学指标的实验室分析,为后续申请该航次岩芯的高分辨率样品以深入探究格陵兰冰盖演化与海洋关键过程积累了宝贵的经验。
格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月—2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002—2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a-1。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与...
格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月—2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002—2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a-1。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与...
格陵兰冰盖流速监测对定量估算冰盖物质损失以及研究冰盖对全球变暖的响应具有重要意义。利用SAR影像强度信息进行偏移量追踪是目前冰川流速监测的主要方法。冰川表面散射特性的变化会导致SAR影像强度信息发生改变,导致影像匹配失相关,从而造成提取的流速场中存在大量错误与空洞。为了克服该问题,本文提出了一套基于Sentinel-1 SAR影像提取冰川流速时序的数据处理流程:通过开运算、连通性分析、自适应中值滤波等方法去除单对追踪影像中的噪声与错误;同时利用现有产品的年度和月度平均流速数据完成基准校正并引入角度信息进一步去除部分噪声与粗差;最后通过间隔6日、12日、18日的追踪影像引入冗余配对,使用迭代的奇异值分解(SVD)方法求解时序方程组,构建冰川流速时序。将利用本方法提取的2018年—2020年间格陵兰Petermann溢出冰川6日间隔冰流速时序与现有流速产品进行对比表明,与由单轨数据生成的CPOM冰川流速产品相比,本方法获得的流速时序噪声更少,流速场在时空上更连续平滑,在相同冰川范围内有效数据覆盖范围更广。与由多轨数据合成的PROMICE产品比较表明两者的精度和有效数据覆盖率类似,但本文方法...
在格陵兰冰盖北部溢出冰川以外的地区,竖井和注水冰裂隙较少分布,冰面融水被直接汇流至冰前区域形成冰前水系,最终汇入海洋,形成独特的冰面—冰前融水汇流过程,这对冰盖物质平衡以及海洋环境变化产生重要影响。卫星遥感能够直接观测冰面融水径流和冰前水系的时空分布,提供河流位置、形态、动态变化等关键信息,已成为研究格陵兰冰盖融水汇流过程的重要手段。本研究以格陵兰冰盖北部地区Denmark冰面—冰前流域(3240 km2)作为研究对象,采用Sentinel-2和Landsat 8卫星影像提取研究区2014年—2021年消融期(6—8月)冰面融水范围与流域出口冰前河宽,分析冰面融水与冰前河的季节与年际变化特征。进一步对比遥感观测的冰面—冰前流域融水与区域气候模型(MARv3.12与RACMO2.3p2)模拟的冰面融水径流量,揭示冰面—冰前融水汇流过程对冰面消融强度的响应。结果表明:(1)消融期内,冰面融水范围首先向高海拔地区推进(最高海拔达约1400 m),随后逐步消退至冰盖边缘至约500 m,流域出口冰前河宽呈现先增大至约2000 m后减小至约100 m的变化趋势;(2)遥感观测的冰面融水与流域出口冰...