为研究多年冻土地基冻结过程中桩基础的冻拔效应,基于桩周土的冻胀变形及桩土之间的变形协调关系,结合剪切位移法构建了一种考虑桩土界面相对滑移效应的单桩冻拔荷载传递的理论模型.采用有限差分法,通过MATLAB编程对桩基受力微分方程求解,获得了冻拔力的发展规律,并采用现场试验与有限元数值模拟验证了模型的合理性.接着分析了冻胀率、桩土界面本构参数及桩长对桩基冻拔响应的影响.研究表明:冻结过程桩身轴力逐渐增大,冻深附近出现轴力峰值,部分桩土界面会产生滑移;冻至最大冻深2.3 m时桩身轴力达到最大值690.3 kN,滑移段长度约为0.65倍冻深;冻拔力随土体冻胀率的增大并非呈线性增大,主要受桩土界面峰值剪切强度与残余强度的影响;桩长越长,抗冻拔效果越好.
针对多年冻土区L型挡墙设计中水平冻胀力计算方法不完善的问题,基于利夫金地基模型及挡墙-土体之间的协同变形原理,分别建立了墙后有无换填土两种情况下的L型挡墙水平冻胀效应计算模型,利用叠加原理及有限差分法对所提出的计算模型进行了求解,并依托MATLAB自行编制了水-热-力耦合分析软件。结合工程实例,应用提出的L型挡墙水平冻胀效应计算方法得到的水平冻胀力值分别与现场实测值、修正土压力值、规范经验值及水-热-力耦合软件模拟值进行对比分析,结果表明:提出L型挡墙水平冻胀效应计算方法得到的水平冻胀力值与现场实测值及数值模拟值在大体趋势上吻合较好,修正土压力值、规范经验值低估了水平冻胀力对挡墙的作用;相比规范经验值及现场实测值,提出的L型挡墙水平冻胀效应计算方法得到的水平冻胀力沿墙高呈抛物线和梯形两种分布模式,更具有普遍性;通过多场耦合分析可知,所提出L型挡墙水平冻胀效应计算方法与水-热-力耦合方法得到冻胀力趋势相似,表明了计算方法的可行性,可为多年冻土区L型挡墙设计提供一定的理论支持和指导。
为研究不同冻结温度及含水率对冻结粉土中锚杆抗拔性能的影响,根据冻土与混凝土接触面的力学特性和变形规律,采用双曲线模型描述锚杆-冻土接触面的剪切特性。基于荷载传递法,建立考虑温度和含水率影响的锚杆荷载传递方程,采用有限差分法进行求解,得到锚固段的剪应力、轴力及承载力计算式;通过ABAQUS数值模拟验证荷载传递方程的合理性,结合算例分析表明:冻土中锚杆抗拔承载力大于常温土,且温度越低承载力越高;在相同荷载作用下,冻土温度越低,轴力沿深度衰减越快,剪应力分布越不均匀;相同冻结温度下,锚杆承载力随含水率的增大呈先增大后减小的趋势;增加锚固体直径能有效地提高锚杆的极限承载力。
为了深入研究积雪覆盖边界条件下的土壤水分迁移规律,通过冬季野外土壤水分观测试验,利用土壤水动力学理论,建立了稳定积雪覆盖条件下季节性冻土水分迁移模型。研究结果表明,积雪覆盖土壤比裸地平均地温高出1℃,土壤体积含水率(土壤剖面0~100cm内)高出2%,体现了积雪覆盖不仅能够阻碍土壤热量散失,而且能保持土壤墒情;建立的水分迁移模型能够精准的模拟积雪覆盖条件下冻结土壤水分迁移动态,其相对平均误差仅为3.51%。研究结果对于丰富和完善冻土水分迁移理论,解决春旱和冬小麦"冷拔"等问题具有重要的理论和实践意义。
利用有限差分方法,分析隧道联络通道结构施工时混凝土水化热对人工冻结形成的冻土帷幕的影响。混凝土水化热的释放使得混凝土内温度急剧上升,之后受冻土帷幕低温和混凝土永久支护边界散热的影响,温度逐渐下降。混凝土水化热大量释放期间,冻土帷幕局部升温并融化,相界面移动迅速,并达到最大值。之后温度回落,经过几天的降温后,冻土开始回冻,冻土帷幕回冻速度比较缓慢。分析结果表明,常见的盾构隧道联络通道结构浇注的混凝土始终不会进入负温状态,混凝土不会因为冻土帷幕低温影响遭受冻害。
以Alaska北极美国Barrow气象观测站的地温观测资料和土壤热物理参数为基础,以伴有相变问题的一维热传导方程的有限差分法为工具,在考虑和忽略未冻水2种情形下模拟了Barrow地区0.29,0.50和1.0 m深处的地温值,并与观测值进行了比较.计算结果表明,未冻水对冻土热状况数值模拟结果有很大影响.
基于冻土的蠕变特性和本构方程,应用FLAC3D程序进行了基坑开挖的数值计算。计算结果表明,基坑开挖暴露时间对其变形有较大的影响;增大冻土墙厚度可以有效的控制基坑的变形量;数值模拟结果为冻土墙设计与施工提供科学的依据。