月球表层与月壳岩石密度的横向与径向的变化,反映了月表及内部成分以及月球演化等特征.本文利用月球勘探者号伽马射线谱仪探测的月表Fe,Th与Mg元素分布数据,依据前人给出的元素含量与岩石类型的关系,对月球表层进行了岩性填图,并结合岩石样品与陨石的密度测试数据建立初始密度模型,采用铁元素与岩石密度的关系对其进行修正,从而建立了月表物质密度分布模型.基于嫦娥一号激光测高数据和日本SELENE计划发布的月球重力模型,计算出月球布格重力异常,进而反演得到月壳0~40 km深度范围内岩石平均密度分布模型.分析表明,大部分区域上,月壳至少月壳上部岩石成分主要以轻质的富含铝、钙、镁质的硅酸盐类岩石为主.由此推测,原始月壳极有可能是由轻质的、富含钙、镁质硅酸盐类岩石构成的全球性月壳.现今的玄武岩与克里普岩只是覆盖于原始的月壳之上的岩层,且厚度不大.
日本探月卫星SELENE(KAGUYA)携带了14种仪器设备用于对月球进行多方面的测量,其中的3种设备用于对月球进行大地测量观测.这包括两个子卫星和一台激光高度计测量设备.这些设备所获得的科学成果主要包括:利用多普勒和同波束VLBI测量得到了精度为10m的精密轨道确定结果;利用四程多普勒测量首次获得了月球背面精确的重力场;首次获得了纬度高于86°区域的月面地形图;通过使用月球全球地形信息与月球全球重力场信息得到了全球重力异常分布图;获得了月壳厚度全球分布图以及月球南北极区光照率图.这些成果的取得进一步加深了人类对于月球的认识.
月球重力场研究及相关应用是月球科学探测中的重要内容之一。本文回顾了月球重力测量及月球重力场模型、月球地形模型等主要研究进展,总结了月球重力场(包括地形)在月球内部结构研究,特别是在月壳结构以及月球质量瘤等方面取得的研究成果。此外,月球重力场还应用于月幔/月核研究、月球均衡状态、月球物质成分及月球演化历史的研究中。随着我国嫦娥探月计划的实施,利用其探测数据建立自主重力场模型及地形模型成为我国探月研究的基础工作之一。在此基础上可开展月壳结构、月球均衡状态、月球质量瘤及月壳成分等研究,同时借鉴地球科学中相关学术思想和方法技术,从而促进对月球及类地行星等结构的研究。
月球亚平宁山脉位于雨海东南侧,是月球上最大的山脉,其高差可达3000m以上.月球重力资料显示,跨越该山脉的重力异常剖面呈现明显的"深大断裂"特征.本文利用嫦娥一号获得的月表地形数据和Lunar Prospector获得的月球重力数据,通过模拟亚平宁山脉地区壳幔结构,分析了其重力异常成因,指出该地区有可能存在"岩石圈"断裂.结合月球热演化和反演的壳幔模型推断,距今38.5亿年前后,月球岩石圈可能存在横向运动和挤压,造成了该断裂的形成,山脉邻近区域特别是雨海盆地的岩石圈变形和岩浆填充对断裂演化起到主要作用.