探究昆仑山北坡冰川湖时空变化及冰川湖溃决洪水(Glacier lake outburst flood,GLOF)风险评估对区域水资源安全和生态发展具有重要意义。基于Google Earth Engine(GEE)遥感计算平台分析昆仑山北坡冰川湖近30 a的变化特征和GLOF风险评估模型对当前的冰碛湖进行灾害与风险评估。结果表明:(1)1990—2023年昆仑山北坡冰川湖呈显著增长趋势,冰川湖的数量从1990年的248个增加到2023年的925个(增加了2.73倍),面积从1990年的14.99 km2增加到2023年的54.83 km2(增加了2.66倍),冰川湖在昆仑山北坡西部高海拔山区增加显著。(2)通过对2023年GLOF风险评估分析得出,灾害水平在叶尔羌河流域最高(约占47.2%),其次是和田河流域(约占15.7%)。风险水平较高是叶尔羌河流域(约占50.8%),叶尔羌河流域高风险冰川湖占整个昆仑山北坡高风险冰川湖的60.7%。(3)1990—2023年冰川湖的增长趋势与区域气候变化相关,山区降水增加和冰川积雪消融是冰川湖扩张的主要原因。开展冰川湖溃决洪水...
探究昆仑山北坡冰川湖时空变化及冰川湖溃决洪水(Glacier lake outburst flood,GLOF)风险评估对区域水资源安全和生态发展具有重要意义。基于Google Earth Engine(GEE)遥感计算平台分析昆仑山北坡冰川湖近30 a的变化特征和GLOF风险评估模型对当前的冰碛湖进行灾害与风险评估。结果表明:(1)1990—2023年昆仑山北坡冰川湖呈显著增长趋势,冰川湖的数量从1990年的248个增加到2023年的925个(增加了2.73倍),面积从1990年的14.99 km2增加到2023年的54.83 km2(增加了2.66倍),冰川湖在昆仑山北坡西部高海拔山区增加显著。(2)通过对2023年GLOF风险评估分析得出,灾害水平在叶尔羌河流域最高(约占47.2%),其次是和田河流域(约占15.7%)。风险水平较高是叶尔羌河流域(约占50.8%),叶尔羌河流域高风险冰川湖占整个昆仑山北坡高风险冰川湖的60.7%。(3)1990—2023年冰川湖的增长趋势与区域气候变化相关,山区降水增加和冰川积雪消融是冰川湖扩张的主要原因。开展冰川湖溃决洪水...
积雪是水循环的重要组成部分,积雪的积累消融对下游社会经济发展具有重要影响。采用趋势分析、相关性分析等方法分析2000—2020年昆仑山北坡积雪面积、积雪日数(SCD)在空间和时间上的分布特征和变化趋势,并分析积雪的海拔效应及气候对积雪的影响。结果表明:(1) 2000—2020年昆仑山北坡积雪面积呈减少趋势(-152.4 km2·a-1),2010年以前积雪面积距平偏正,2010年后偏负。(2)月尺度上,积雪覆盖率(SCF)从8月到翌年7月呈先增后减的趋势,冬、春季高于夏、秋季。(3) SCD分布具有明显的空间异质性,中部地区SCD的变化影响该地的年总SCD。(4) 2000—2020年的年均SCD随海拔升高而增加,海拔>6.0 km为331.6 d,说明高海拔地区存在常年性积雪。(5)气温与积雪面积呈显著负相关(相关系数为-0.68,P0.05),气温对积雪的影响高于降水。
积雪是水循环的重要组成部分,积雪的积累消融对下游社会经济发展具有重要影响。采用趋势分析、相关性分析等方法分析2000—2020年昆仑山北坡积雪面积、积雪日数(SCD)在空间和时间上的分布特征和变化趋势,并分析积雪的海拔效应及气候对积雪的影响。结果表明:(1) 2000—2020年昆仑山北坡积雪面积呈减少趋势(-152.4 km2·a-1),2010年以前积雪面积距平偏正,2010年后偏负。(2)月尺度上,积雪覆盖率(SCF)从8月到翌年7月呈先增后减的趋势,冬、春季高于夏、秋季。(3) SCD分布具有明显的空间异质性,中部地区SCD的变化影响该地的年总SCD。(4) 2000—2020年的年均SCD随海拔升高而增加,海拔>6.0 km为331.6 d,说明高海拔地区存在常年性积雪。(5)气温与积雪面积呈显著负相关(相关系数为-0.68,P0.05),气温对积雪的影响高于降水。
2021年10月首批启动了第三次新疆科学考察——“昆仑山北坡水资源开发潜力及利用途径科学考察”。结合多源遥感信息和2022—2023年野外科考工作,对昆仑山北坡的水文水资源变化和水资源利用进行了调查研究。结果表明:(1)1990—2020年,昆仑山北坡山区的气温、降水分别以0.14℃·(10a)-1和6.53 mm·(10a)-1幅度增加。(2)冰川变化相对稳定,积雪面积和积雪深度表现为略微增加。(3)永久性水体和季节性水体面积分别显著增加79.89%和144.49%。(4)东昆仑-库木库里盆地的阿牙克库木湖和阿其克库勒湖两大湖泊的水域面积分别增加了68.91%和58.22%,盆地内多条河流具备水资源开发潜力。(5)昆仑山北坡陆地水储量总体呈增加趋势,表现为从西向东增加趋势越加显著。(6)昆仑山北坡的主要河流和田河、克里雅河和车尔臣河年均径流量2010—2023年较1957—2023年分别增加了20.24%、27.85%和45.17%。(7)基于不同气候变化情景模拟预测至21世纪中后叶,主要河流径流量将保持上升态势,区域水资源量总体呈增加趋势。昆仑山北坡的水资源禀赋可为区域绿色高质量发...
2021年10月首批启动了第三次新疆科学考察——“昆仑山北坡水资源开发潜力及利用途径科学考察”。结合多源遥感信息和2022—2023年野外科考工作,对昆仑山北坡的水文水资源变化和水资源利用进行了调查研究。结果表明:(1)1990—2020年,昆仑山北坡山区的气温、降水分别以0.14℃·(10a)-1和6.53 mm·(10a)-1幅度增加。(2)冰川变化相对稳定,积雪面积和积雪深度表现为略微增加。(3)永久性水体和季节性水体面积分别显著增加79.89%和144.49%。(4)东昆仑-库木库里盆地的阿牙克库木湖和阿其克库勒湖两大湖泊的水域面积分别增加了68.91%和58.22%,盆地内多条河流具备水资源开发潜力。(5)昆仑山北坡陆地水储量总体呈增加趋势,表现为从西向东增加趋势越加显著。(6)昆仑山北坡的主要河流和田河、克里雅河和车尔臣河年均径流量2010—2023年较1957—2023年分别增加了20.24%、27.85%和45.17%。(7)基于不同气候变化情景模拟预测至21世纪中后叶,主要河流径流量将保持上升态势,区域水资源量总体呈增加趋势。昆仑山北坡的水资源禀赋可为区域绿色高质量发...
利用ITSLIVE数据、Landsat数据提取了喀喇昆仑山北坡42条冰川的表面流速。将末端运动与表面运动特征结合起来,分析对比了不同运动类型冰川表面流速的时空变化。结果表明:(1)1989—2018年,研究区42条冰川中,存在稳定冰川16条、前进冰川6条、退缩冰川1条、跃动冰川19条。空间上,流速分布符合冰川运动一般原理,可在积累区和冰舌上部发现明显的高值区域,这些区域多出现在跃动冰川主干或支部,流速大小一般在100.00 m·a-1之上,如在音苏盖提冰川南分支,其最大流速可达到358.33 m·a-1。(2)冰川流速分布与地形要素的关系密切。流速在海拔4600~5000 m之间达到最大(54.55 m·a-1),是冰川末端流速的10倍以上;分布在坡度0~5°之间的42条冰川平均流速最大,并且随着坡度的增大,流速逐渐减小;处于东向的冰川流速最大,处于西南向的流速最小。(3)稳定冰川流速年际变化较稳定,不同年份相同位置的流速值较一致;而对于前进冰川和退缩冰川而言,年际流速波动均较大;跃动冰川不同位置年...
利用ITSLIVE数据、Landsat数据提取了喀喇昆仑山北坡42条冰川的表面流速。将末端运动与表面运动特征结合起来,分析对比了不同运动类型冰川表面流速的时空变化。结果表明:(1)1989—2018年,研究区42条冰川中,存在稳定冰川16条、前进冰川6条、退缩冰川1条、跃动冰川19条。空间上,流速分布符合冰川运动一般原理,可在积累区和冰舌上部发现明显的高值区域,这些区域多出现在跃动冰川主干或支部,流速大小一般在100.00 m·a-1之上,如在音苏盖提冰川南分支,其最大流速可达到358.33 m·a-1。(2)冰川流速分布与地形要素的关系密切。流速在海拔4600~5000 m之间达到最大(54.55 m·a-1),是冰川末端流速的10倍以上;分布在坡度0~5°之间的42条冰川平均流速最大,并且随着坡度的增大,流速逐渐减小;处于东向的冰川流速最大,处于西南向的流速最小。(3)稳定冰川流速年际变化较稳定,不同年份相同位置的流速值较一致;而对于前进冰川和退缩冰川而言,年际流速波动均较大;跃动冰川不同位置年...