基于1961-2020年锡林郭勒盟15个国家气象观测站积雪日数和积雪深度数据,采用线性回归、Mann-kendall突变检验及小波分析等方法,对锡林郭勒地区的积雪初日、终日,积雪日数及积雪深度分布特征进行分析。结果表明:锡林郭勒盟积雪初、终日随经纬度变化不明显;积雪初日总体明显推迟,积雪终日总体明显提前;积雪日数呈东多西少分布,并以0.128天/年的速率减少;积雪日数1月份出现峰值;阿巴嘎旗、苏尼特左旗、镶黄旗积雪日数在20世纪60年代出现了突变现象;年均积雪深度由西到东增加,最大雪深出现在乌拉盖,最大积雪深度总体随时间明显增大;12个观测站最大积雪深度在20世纪60-80年代出现了突变;积雪日数存在准8~10年周期,最大积雪深度的主要周期区域间差异较大。
利用近10 a G6京藏高速沿线自动气象站与交通气象站逐时观测资料,分析G6呼和浩特—卓资县—集宁区段(简称G6呼集段)道路结冰的时空特征及影响因子的变化规律。结果表明:10—次年4月为G6呼集段道路结冰易发期,通过分析“冰点”温度变化,G6呼集段呼和浩特至集宁方向路面温度(简称路温)和气温呈先陡降再缓升的U型特征,卓资段为U型底部,呼市至卓资、集宁段结冰日数呈现“少、多、少”分布,卓资段最先达到结冰气象条件。降雪、积雪是引发该路段道路结冰的主要诱因,年均40次,占比89%,降雪结冰主要发生于11至次年3月,傍晚至凌晨为结冰高发时段,结冰过程持续5~30 h;积雪结冰的特点是时间短,冰面浅薄。降水和高湿引起的道路结冰年均不到5 d,占比11%,主要发生于秋冬、冬春交替夜晚。日最低气温主要集中于06—07时,白天路温高于气温,两者变化趋势一致,其温差从日出至日落呈先增后减,夜晚气温略高于路温,温差稳定。通过路温和气温的变化关系总结出不同区段、时期的温差公式,利用高分辨率气温数据实现路温精准监测,达到及时预警的目的。
黑龙江省是我国高纬度多年冻土的主要分布区,在气候变暖的趋势下,多年冻土退化严重,引起的水文、生态和环境等问题成为相关科学研究关注的焦点。基于黑龙江省34个气象站1971-2019a的气温和地表温度数据,采用冻融指数和地面冻结数模型,结合趋势拟合和局部薄盘光滑样条函数插值法等,研究了黑龙江省年平均气温、年平均地表温度和冻融指数的时空变化,冻土分布特征及其影响因素。结果表明:黑龙江省多年平均气温和地表温度变化范围分别为-8.64-5.60℃和-6.52-7.58℃,空间分布上随纬度和海拔呈带状分布,年平均气温和地表温度年际升温速率趋于一致,分别为0.34℃/10a和0.33℃/10a。从1971-2019a,大气冻结指数和地面冻结指数分别以-5.07℃·d·a-1和-5.04℃·d·a-1的速度下降,大气融化指数和地面融化指数分别以7.63℃·d·a-1和11.89℃·d·a-1的速度上升。大气/地面冻融指数的空间分布上均呈现出纬向趋势,但是在北部山区海拔的影响大于纬度。多年冻土主要分布在北部的大、小兴...
以青藏高原海螺沟冰川退缩区为研究对象,借助其长达160a的植被演替序列,探讨Cr的时空分布和累积循环特征,并解析其潜在来源.结果表明,退缩区C层土壤Cr含量为(155.17±32.68) mg/kg,显著高于O层(48.23±10.21) mg/kg (P<0.05).随着植被的演替,O层土壤Cr含量随淋溶作用的增强而逐渐降低.在植被系统中,各演替阶段优势种对Cr均无显著富集特征(ω<1).此外,土壤是冰川退缩区生态系统的主要Cr库(2269.90±234.57)mg/m2,而各样地O层土壤Cr储量约为植被的9~20倍.随着演替的进行,土壤有机质含量升高而植被的“归还作用”减弱,导致Oi、Oe层土壤Cr储量逐渐减小而Oa层和植物Cr储量逐渐增大.研究发现,“高循环强度-低吸收利用”为冰川退缩区生态系统中Cr的主要循环策略.根据主成分解析结果,贡嘎山土壤Cr以母质土壤风化来源为主(68.89%),而大气沉降对其影响并不显著.
利用1974—2016年10月至次年4月河北省最大冻土深度、气温和0 cm地温数据,采用线性相关等方法,分析河北省季节性冻土的最大冻结深度时空分布特征及其与平均气温和地温的相关性。结果表明:河北省冻土的最大冻结深度高海拔地区大于低海拔地区、高纬度地区大于低纬度地区。近43 a最大冻结深度呈波动减小趋势,最大冻土深度与平均气温和地温呈负相关,其对气温升高的响应更显著。中北部大部分地区最大冻土深度随平均气温和地温变化的递减率一致,而南部大部分地区最大冻土深度随气温变化的递减率大于随地温变化的递减率。
季节性寒区隧道温度场随时间和空间不断变化,为明确季节性寒区隧道温度场的三维时空变化规律,为季节性寒区隧道防冻保温设计提供依据,依托某季节性寒区公路隧道设计了现场监测方案,在隧道洞口段一定范围内布置了5个环境温度场测试断面和2个围岩温度场测试断面,采用现场监测方法获取了隧道洞内环境温度场和围岩温度场随时间和空间的变化规律,在此基础上分别建立环境温度场和围岩温度场时空分布的统计模型,并推导了围岩冻结深度随时间和空间的变化规律。结果表明:隧道环境温度与时间和隧道进深具有三维变化关系,同一个监测断面温度与时间呈正弦函数变化,多个断面平均温度随着隧道进深呈近似线性变化,多个断面的温度振幅随隧道进深呈对数函数变化;隧道围岩径向温度与时间、隧道进深和围岩径向深度3个指标均有关系,同一断面围岩温度随时间也具有正弦变化特征,围岩温度幅值随围岩径向深度增大呈指数规律降低,达到一定深度后温度幅值为零,围岩平均温度呈对数规律变化;围岩冻结深度随时间呈周期性变化,随隧道进深增加呈减小趋势。研究结果可为季节性寒区隧道防冻保温设计提供指导。
利用锡林郭勒盟1961—2018年近58a有完整记录的11个气象站的最大冻土深度、冬季11月—翌年3月平均气温和平均地面最低温度资料,利用描述分析、线性趋势拟合、相关性检验、Mann-Kendall突变检验等方法,对锡林郭勒盟最大冻土深度的时间演变、空间分布及与气温、地温的关系进行了分析。结果表明:二连浩特市最大冻土深度的均方差和变差系数最大,稳定性最差;东乌珠穆沁旗、二连浩特市最大冻土深度变浅幅度最大,气候倾向率为-16.25cm/10a和-15.48cm/10a;20世纪70年代是近58a来最大冻土深度最深的时期;全盟11个站中有5个站最大冻土深度发生突变现象,其中一个站突变点在1982年,其他4个站突变点在1989—1991年;锡林郭勒盟最大冻土深度的空间分布特征为东深西浅、北深南浅;锡林郭勒盟各站11月到翌年3月平均气温和平均地面最低温度均呈上升的趋势;最大冻土深度和平均气温、平均地面最低温度均呈负相关,部分台站相关性显著,随着气温和地温的升高冻土深度在变浅。
利用1961~2016年青海省东部农业区11个气象观测站点的冻土观测资料,采用累积距平、滑动t检验等方法,分析了青海东部农业区季节性最大冻土深度的时空分布特征及变化规律。结果表明:东部农业区整体冻结开始时间呈逐年推迟趋势,完全解冻时间呈逐年提前趋势,平均冻结持续时间呈逐年缩短趋势;最大冻土深度年际变化在90年代前后由减小趋势转变为增长趋势,在1986年出现了突变;化隆站最大冻土深度多年平均值最高为72.15cm,尖扎站最低为28.32cm。
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深, 6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作...
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。