冻土区管道保温层效果与评价指标变化的随机性密切相关,以往冻土区管道保温层效果评价模型存在一定的局限性与不足。为了提升冻土区管道保温层效果模型的应用效果,本文基于驱动力-状态-响应(Driving force-State-Response,DSR)理论、综合云理论和迭代运算方法相结合的综合评价方法,构建适用于中俄冻土区管道保温层效果的评价模型。为了验证冻土区管道保温层效果评价模型的科学性,以中俄管道沿线(漠河—大庆段)四处典型监测区域MDX007、MDX113、MDX304和MDX364为实例,应用评价模型对管道保温层效果的失效类型和失效可能性概率进行了综合分析。结果表明:运用评价模型可以科学指导中俄原油管道保温层效果的评估,并依据相应的保温层效果失效类型结果给出对应的措施建议。综合云模型能够结合不同理论模型的优势,保证冻土工程环境评价的科学性,通过置信度值验证,具有良好的应用前景。研究成果可为中俄原油管线安全稳定运营提供战略性的科学支撑。
桩基是多年冻土区最为常见的基础形式之一,降低桩基工程热扰动和提高桩基长期稳定性是冻土工程研究的重点。该文将太阳能制冷技术引入多年冻土区桩基工程,并开展主动冷却桩基现场试验与数值模拟研究。试验结果表明:温控桩壁的制冷温度可降至负温以下,运行3、 10和30 d的制冷半径分别达到0.65、 1.24和1.5 m以上;通过理论分析与数值反演估算温控桩的有效制冷功率约180 W,制冷因数为0.9。模拟结果表明:制冷时长越大,桩壁温度振幅越大,稳定温度越低;制冷时长6、 9和12 h/d所对应的桩壁温度分别可降至-2.39、-3.48和-4.45℃; 10 a后的影响半径分别超出6.68、 8.34和9.46 m;温控桩服役10 a后停止运行,桩周冻土仍可以在2~4 a内处于低温稳定状态。
新型框架通风锚杆是自主研发的一种冻土边坡柔性支挡结构,具有广阔的应用前景。为了探究新型框架通风锚杆的降温效果及力学效应,设计了能够加载、变角度且可同时测得温度、水分、风速及内力的多功能冻土实验箱,并搭建了新型框架通风锚杆支护多年冻土边坡的室内试验,得到了不同时期内边坡温度、水分、风速及支挡结构内力变化规律。试验结果表明:越靠近通风锚杆,土体温度和水分变化越明显,新型通风锚杆能吸收冷量并沿轴向和径向传递和扩散,具有良好的降温效果,并保持冻土边坡的冻结状态。新型通风锚杆内风速变化规律与外界风速变化较为一致,外界风速越大,新型框架通风锚杆降温效果越明显。不同时期内,新型锚杆轴力呈抛物线型变化,冻结期轴力大于融化期,且冻结期框架内力是融化期的2~3倍。研究结果可为新型框架通风锚杆的设计和工程应用提供指导。
冻土毛霉菌株BO-1是新报道的韭菜迟眼蕈蚊病原真菌,但是关于其致病力和田间防效的针对性研究尚未见报道。本研究分析了冻土毛霉菌株BO-1对韭菜迟眼蕈蚊幼虫的致病力,探究了温度对菌株致病力的影响,并通过防效试验评价了其应用价值。结果表明,冻土毛霉菌株BO-1对韭菜迟眼蕈蚊幼虫致病活性较高,处理3 d对2龄和4龄幼虫的致死中浓度LC50分别为3.714×10~5和4.680×10~6孢子/mL;冻土毛霉菌株BO-1发挥高致病活性的适宜温度为16~28℃,尤以20~24℃最优。盆栽和田间试验证实,菌株BO-1对韭菜迟眼蕈蚊防效突出,并具有较好的持续控害作用。当孢子浓度为1×10~9孢子/m L时,处理后7 d防效为95.57%,与化学杀虫剂噻虫胺(93.57%)相当。因此,将冻土毛霉菌株BO-1作为韭菜迟眼蕈蚊生防菌剂加以进一步开发可行性较强。
针对高寒高纬度地区不同冻土厚度下爆破块度大块率高的难题,在乌努格吐山铜钼矿冬季低温下进行爆破漏斗试验。根据试验结果利用利文斯顿爆破漏斗理论确定了冻土装药参数与爆破漏斗参数之间的关系,计算出冻土层的变形能系数,分析了不同冻土层厚度的爆破漏斗特性曲线。在装药量为4 kg时,冻土临界深度为1.3 m,最佳埋置深度为0.84 m,变形能系数为1.06;在装药量为8 kg时,冻土临界深度为1.7 m,最佳埋置深度为1.2 m,变形能系数为1.05;在装药量为12 kg时,冻土临界深度为2.2 m,最佳埋置深度为1.34 m,变形能系数为0.95。根据爆破立方根定律,推导出适用于现场冻土区的最佳装药参数,经过对不同冻土层厚度多种爆破参数下爆破效果对比分析,采取“分区域,分阶段”原则优化爆破效果,对于弱冻层区域采用减小堵塞长度并增加装药高度的方法提高爆破质量;对于强冻土区主爆孔周围增加辅助孔来降低冻土层大块率。总结出适用于高寒地区随冻土层厚度变化的爆破参数优化方案,爆破效果改善明显,在很大程度上降低了冻土层爆破后的大块率产出,提高供矿率。
考虑到宽幅路基的“聚热效应”和复杂的多年冻土环境,拟建青藏高速公路建设所面临的关键问题是如何保证路基的长期热稳定性。基于现场监测数据和传热传质理论,建立分离式通风管路基三维数值模型,分析与预测未来50年通风管在青藏高速公路分离式路基中的工程效果。结果表明:分离式通风管路基具有较好的降温效果,能够保证路基及其下部多年冻土的长期热稳定性。但是,当隔离带宽度小于10m时,后幅路基管道内部风流变化特征受到隔离带宽度的显著影响,导致其对下部多年冻土的降温效果弱于前幅路基。此外,在隔离带较窄情况下,两幅路基之间隔离带区域存在局地增温效应,将对路基及其下部多年冻土产生严重的热扰动,不仅引起多年冻土上限下降、温度升高,而且增加了路基两侧下部土体温度场的不对称性。尝试将两幅路基通风管连通来弱化局地增温效应,但连通后路基及隔离带区域下部土体的热状况反而更差,说明这种方法未能有效解决局地增温效应的热影响。
为了分析片块石路基的尺度效应问题,通过数值手段,计算相同条件下窄幅和宽幅路基的片块石层对流强度和冻土地温。研究结果表明:相比于窄幅路基,宽幅片块石路基的最大对流风速降低了34%,冻土上限下降了1.08 m,冻土年平均地温升高了0.90℃。因此,对片块石路基的尺度效应问题不容忽视,表现在工程应用上,不能简单地将片块石路基直接应用于多年冻土区高速公路宽幅路基,应采取结构优化设计,或与其他结构组成复合路基结构。
为保护青藏高原多年冻土区宽幅路基或高等级路基中心下冻土热稳定性,提出了利用路基中间隔离带安装热管的措施.根据青藏高原多年冻土区宽幅路基或高等级公路实际的气温和地质条件,对近20年的数据进行了模拟分析.结果表明:在年平均气温为-4.0℃的青藏高原多年冻土区,考虑未来50年气温上升2.6℃的条件下,在路基中间隔离带安装热管能够有效抬升路基中心下人为冻土上限,确保高温多年冻土区宽幅路基或高等级路基的热稳定性.
为了研究多年冻土区高速公路热管路基的制冷效果及适用范围,建立热管路基水热计算模型,分析不同条件下的热管路基冻土人为上限深度和热稳定状态,并将路基高度、年平均气温、气温年较差3个因素形成组合进行热管的适用范围分析。研究结果表明:对于气温年较差为12℃的冻土区,高度为4 m的热管路基适用于年平均气温低于-5.5℃的区域,高度为3m的热管路基适用于年平均气温低于-5.8℃的区域;对于青藏高原大部分地区,在15 a的运营期限内,高速公路热管路基具有一定的局限性,其服役期限内不能保持路基稳定性;但对于风火山地区,采用高度为3 m的热管路基可以保证工程稳定性。
青藏铁路多年冻土区的片石护坡路基的大量使用,起到了降低路基基底多年冻土温度和调节多年冻土人为上限形态的作用,为青藏铁路的安全运营提供技术保障。青藏铁路多年冻土区沿线沙害主要分布在线路经过的河谷及湖泊附近,在风沙危害严重地段,片石护坡孔隙被沙害掩埋,改变了片石层传热特性,影响片石护坡的降温效果。通过室内试验及现场地温监测分析,根据不同条件(有无积沙、阴阳坡)对片石护坡的降温效果进行了对比分析,研究结果表明:(1)由于片块石层的大孔隙特性,使得片块石护坡能通过暖季隔热、寒季散热这一机理来对路基体进行降温,测温数据显示降温效果良好;(2)片石护坡积沙后其降温效果明显减弱,通过片石层内0.6 m和0.8 m深度的地温积温比较,积沙路段积温明显高于无积沙路段,其中路基阳坡侧高出约50%,路基阴坡侧高出约100%。