在冻结法施工中,保证冻结壁稳定性至关重要,传统的现场检测方法因其间断性而无法提供实时监测,限制了对冻结壁潜在灾变的及时响应,采用冻土的深层原位精准探测是揭示冻结壁重大工程灾变机理及灾害预警的有效手段。基于卷积神经网络提出一种基于图像数据驱动的冻土强度智能识别方法,通过对93组试样的多角度图像捕获及随后的单轴抗压强度试验,标注试样图像与实际强度数据并结合图像数据增强技术构建了深度学习模型训练所需的图像数据集;利用迁移学习深度残差网络34层(ResNet-34)模型,并对比其它不同模型的训练过程和测试结果,发现ResNet-34模型效果最佳,准确率为92.8%且没有出现过拟合现象;应用深度学习模型对冻土强度的影响因素土质、温度和含水率进行识别,发现模型能有效识别出三个变量,证明了模型识别冻土强度的科学性和可靠性;此外研究了模型在不同干扰条件下的表现,模拟典型干扰场景并分析其对模型预测性能的影响,为后续改进数据增强策略和模型优化方向提供依据;引入Grad-CAM(Gradient-weighted Class Activation Mapping)可解释性分析方法揭示卷积神经网络在冻土强度识...
某市地铁区间联络通道采取冻结法施工,冻结区主要含粉质黏土和细沙。为保障冻结开挖施工过程中的安全,验证冻土帷幕强度是否满足施工要求,对该冻结区域进行原状冻土取样,并制作冻土试样进行无侧限抗压强度试验,对冻土强度以及破坏方式进行分析。结果表明,细沙冻土试样平均抗压强度为3.40 MPa,破坏表现为脆性,其中失去抗压能力有2种方式,包括结构破坏,以及受外界影响,冻土中的冰融化使细沙解体而失去承载能力。粉质黏土冻土试样平均抗压强度为0.67 MPa,破坏表现为塑性,主要是受外界影响,冻结融化导致冻土的抗压承载能力下降。最后通过对试验结果和现象分析,提出冻结施工合理化建议,以保障冻结施工过程的安全,为类似冻结工程提供一定参考和借鉴。
针对东港灌区输水渠道存在冻胀破坏问题,研究提出一种以玻璃纤维为外掺料的泡沫混凝土,并分析不同玻璃纤维掺量混凝土的性能。试验结果显示,当纤维掺量为0.6%时,试块在冻融前的抗压强度为15.15MPa;在冻融循环50次后,试块的抗压强度为14.62MPa。当纤维掺量为0%时,试块在冻融前的抗压强度为11.23MPa;在冻融循环50次后,试块的抗压强度为7.73MPa。研究结果明,泡沫混凝土在防冻胀中有较好表现。
深厚表土层井筒施工中较多采用冻结法来实施,其中无侧限抗压强度是冻结设计的重要的力学参数。由于室内实验的局限性及影响因素的复杂性,强度经验公式的适用性差。提出了采用高度集成的XGBoost算法来预测不同粒径分布冻土强度的方法,与其他经验公式方法相比,准确度较高。进一步的通过皮尔逊相关系数分析,分别研究温度、应变速率与冻土无侧限抗压强度的非线性相关性。结果表明,温度和无侧限抗压强度呈强负相关性;强度前期增速较大,中期增速平缓,后期增速较大。应变速率和无侧限抗压强度呈正相关性,强度对不同大小的应变速率敏感程度不同。应变速率较小时,强度略有增加;应变速率增大时,强度增幅增大。不同土体变化趋势相似,但粒径分布不同造成最终强度有差异。该研究可为冻结法施工中,土体的强度预测提供科学依据。
对黄土进行改良是提高黄土地基工程耐久性的重要措施之一。为探讨石灰对黄土特性的影响规律及机制,本文以G109线青海省海东市黄土为研究对象,通过掺加石灰进行化学改良,就改良土试样的界限含水率、抗压强度和孔径分布等特征进行分析,进而确定合理掺量。结果表明:改良后的黄土强度优于黄土本身。随着石灰掺量的增加,液限、塑限、塑性指数增大,抗压强度提高、破坏应变增大。改良后的黄土中,中、大孔隙占比降低,孔隙更为均匀。在满足强度及变形的前提下,建议石灰掺量控制在6%左右。
本研究旨在探讨冰冻尾砂充填技术在某冻土区矿山中应用的合理性。从冻结充填体的力学强度和冻结时间两个方面开展研究,主要对不同温度下的冻结充填体进行了单轴抗压强度测试,并通过热传递数值模拟分析了不同尺寸充填区对冻结时间的影响。研究结果表明,冻结温度与冻结充填体的抗压强度呈现线性关系;此外,通过拟合公式预测了不同矿段中冻结充填体的强度,并验证了该充填技术能够满足矿山充填要求;最后,基于模拟结果,总结得出了关于充填区体积和充填料浆冻结时间之间关系的经验公式,为未来矿山冰冻尾砂充填技术的应用提供了有益的参考。
以牡丹江市东宁地区土层(粉土、粉质黏土、黏土)为研究对象,通过工程钻探等技术手段实地采取原状土样,筛选不同含水率、不同土质的样品,经过室内试验设置不同负温条件对原状土单轴抗压强度和三轴剪切强度等物理力学性质进行研究.结果显示,原状土在不同负温条件下冻结后单轴抗压强度随着温度的降低而增大,黏聚力随着含水率的增加呈指数型增大,内摩擦角随含水率的增加先增加后趋于稳定;在试验负温条件下,-20℃为变化界限,小于-20℃时,冻结土体的单轴抗压强度随含水率的增加呈现先增加后减小的变化规律,黏聚力随着冻结温度降低而增大,-10℃、-20℃条件下冻土的内摩擦角有相似的规律,未随含水率增减发生明显变化,此时冻土抗剪强度随着冻结温度的降低而增加;大于-20℃时,冻结土体的单轴抗压强度随含水率的增加而增加,黏聚力不随冻结温度降低而增加,内摩擦角随着冻结温度的降低而增大,冻土抗剪强度随着冻结温度的降低缓慢增大趋于冰的剪切强度.
冻土强度是冻结法施工及冻土构筑物安全评估中的关键力学参数。然而,冻土强度特性十分复杂,受到环境温度、土体类型、含水量、应变速率等诸多因素的影响,目前还缺少统一的结论。鉴于此,文章对冻土强度的相关试验成果进行了全面回顾,并总结了各因素对冻土强度的影响规律及其作用机理。文献调研结果表明,冻土强度随温度的降低而增大,在工程常见温度范围内二者近似呈线性关系。温度降低所引起的冰强度增加和未冻水含量降低是冻土强度增大的主要原因;当温度低于一定阈值后(如-80℃),冻土强度达到最大值并不再变化。非饱和冻土的抗压强度随含水量的增加而增大,原因在于其饱冰度会随着含水量的增加而增加,使得土颗粒与冰晶体的黏结作用增强。对于饱和冻土,含水量的增加会导致冻土密实度降低,其强度随含水量的增加而降低。冻土抗拉强度与抗压强度具有较强的相关性,其压拉比随土体类型的不同存在较大差异,在3~12之间。整体来看,影响冻土强度的因素众多,目前的研究工作多基于单一影响因素,针对多种因素耦合作用、应变速率影响和抗拉强度的研究仍较少,相关工作有待进一步深入。
为探讨多年冻土原状样承受竖向外荷载时的强度和变形特性,对不同深度的原状冻土样进行单轴试验和固结试验,并分析了冻土抗压强度、弹性模量、破坏形态、融沉特性.试验表明:在单轴试验中,浅层土的应力-应变曲线为不规则的非线性曲线,深土层的应力-应变曲线为抛物线形式曲线,随着含冰量的增加以及含砂量的减少,荷载由土颗粒骨架发展为冰晶体承担,抗压强度和弹性模量随深度的增加先减小后增大.冻土的破坏分为三种:延性破坏时外部无明显裂痕,仅产生挤压变形;弱面剪切破坏引起侧向裂缝以及侧向挤压变形;轴向分裂破坏的裂痕从中间至轴向展开.在固结试验中,主固结一般发生在前100 min,深层土的固结应变及融沉系数比浅土层大,且深土层融沉系数受荷载影响较大.
利用SHPB装置对冻土在-6℃和-16℃时进行有无主动围压的动态冲击试验,对比分析了两种状态下的冻黏质土的应力-应变曲线及其强度和破坏形式。结果表明,无围压作用下冻土的应力-应变曲线比主动围压作用下的应力-应变曲线多了黏性阶段;主动围压对冻黏质土动态抗压强度提高作用大于无围压,两种状态下的冻土都有应变率效应和温度效应;无围压作用下的冻土破坏呈脆性破坏。