冻土覆盖率高的小流域的径流形成受温度因素控制明显,普通水文模型不适用,而常规冻土水文模型因需要较多的气象观测要素而难以应用。考虑冻土流域产流机制,利用青藏高原腹地风火山小流域2017—2018年逐日降水、气温、径流观测数据,以降水、气温为输入,径流为输出,基于长短期记忆神经网络(LSTM)建立了适用于小流域尺度的冻土水文模型,并利用2019年观测数据进行验证。模型得益于LSTM特殊的细胞状态和门结构能够学习、反映活动层冻融过程和土壤含水量变化,具有一定的冻土水文学意义,能很好地模拟冻土区径流过程。模型训练期R2、NSE均为0.93,RMSE为0.63m3·s-1,验证期R2、NSE分别为0.81、0.77,RMSE为0.69m3·s-1。同时,为了验证模型可靠性,将模型应用于邻近的沱沱河流域,模型训练期(1990—2009年)R2、NSE均为0.73,验证期(2010—2019年)R2、NSE分别为0.66、0....