利用霍普金森压杆装置进行动态冲击试验,研究了冻土材料在温度为-10℃、-20℃和-30℃,应变率为250 s-1、450 s-1和600 s-1时的力学性能,分析了冻土材料在此条件下的应力-应变曲线。研究发现,冻土材料有显著的应变率效应和温度效应,冻土强度不但随应变率提高而提高,而且随温度降低而提高;同时冻土材料有屈服现象,在加载后仍有一定的承载能力。
利用分离式Hopkinson压杆(SHPB),以铝质套筒作为围压装置,分别研究温度为-8、-12、-16℃在不同应变率下的人工冻结黏土围压状态变形特征和轴向动态应力-应变关系。研究结果表明:在围压状态下,冻土呈黏塑性破坏特征;当人工冻结黏土温度为-16℃、平均应变率分别为410、457、525、650、827 s-1时,其最大应力分别为10.76、12.18、14.27、20.24、23.34 MPa,最大应变分别为0.081 7、0.097 2、0.105 0、0.131 0和0.166 0,表现出较强应变率效应;-12℃和-16℃时在应变率为457 s-1下的最大应力分别为8.28 MPa和12.18 MPa;当应变率相同时,温度越低,最大应力越大,冻结黏土表现出较强的温度相关性。人工冻土的动力学特性为冻土开挖方法的研究提供依据。
冻土动态力学特性实验研究是冻土力学研究的重要内容之一.以重塑冻结黏土为例,利用分离式霍布金森压杆,得到了人工冻结黏土在冲击荷载作用下的破坏规律,研究了人工冻结黏土温度分别为-4℃,-8℃,-12℃和-16℃时,在不同应变率下单轴状态的变形特征和强度特征.研究结果表明,人工冻土在冲击荷载作用下呈脆性破坏特征,表现了较强的温度效应,但应变率效应不太明显.冻结黏土在冲击荷载作用下的动态力学特性研究为冻土开挖技术提供了理论支持.
采用分离式霍普金森压杆(SHPB),对于-17℃冻土进行了应变率约350、600、800、1 000和1 200 s-1的单轴冲击实验。获得了其相应应变率下的应力应变关系。发现其没有明显的屈服现象,具有显著的应变率效应,其峰值应力与最终应变均随加载应变率增大而增大,并且具有一定的线性关系。引入含损伤的Johnson-Cook模型,描述-17℃冻土的应力应变关系,发现在600~1 200 s-1的加载应变率范围内,该模型具有较好的适用性。
为研究冻土单轴加载下的冲击动态力学性质,采用分离式霍普金森压杆(SHPB)在-28~-3℃不同负温下对人工冻土进行了应变率范围800~1500s-1的冲击实验。获得了人工冻土在不同温度与不同应变率下的应力应变关系,发现人工冻土具有显著的应变率效应和温度效应,即冻土动强度随应变率增大和温度的降低而增大。单轴高应变率加载下,冻土没有明显的屈服现象,加载后试样完全破坏。
利用分离式霍布金森压杆(SHPB)对4种低温下的冻土进行了4种高应变率的动态压缩实验.实验结果表明:冻土不仅具有温度效应,还具有应变率效应,两种效应反映出冻土材料的时温等效性.另外这种时温等效性在分析冻士材料的破坏过程时还体现在它的冻脆性和动脆性.冻土材料动态应力应变曲线的汇聚现象和振荡现象均起源于这种冻脆性和动脆性.