季节性冻土的冻胀融沉影响当地建筑物与构筑物的结构安全,找到地温随时间的变化数据可推算时间域内冻胀融沉对地面建筑的影响规律.以大庆市非饱和冻土为例,基于热传导理论和非饱和土渗流理论,在原位地温监测数据的基础上,建立了冻土的含相变过程的热-流-固(THM)三场耦合数值模型.通过数值模拟结果与实测结果的比较验证了冻土模型的准确性.结果表明:地温随地表温度呈延时周期性变化,在地面以下2.0 m以内,深度每增加0.5 m,温度波峰和波谷日大约推迟30 d;冻结期持续时间影响冻结深度,从而对当地土的周期性冻胀量起决定性影响,冻结期内土的每年最大冻胀位移为30.0 mm左右,冻结期结束后地面高度将快速恢复到冻结期之前的水平,季冻区冻胀融沉敏感性建筑物及构筑物的基础施工时间选择在冻结期结束后2个月至冻结期开始前,可有效减少冻胀融沉危害,大庆及其他类似季节性冻土地区的土壤冻融和冻融过程中的水热迁移研究可作为借鉴.
文章使用数值模拟方法,结合ABAQUS有限元模拟分析手段,对某公路设置泡沫轻质混凝土保温层路基的温度场变化进行分析并处理,对泡沫混凝土应用在季节性冻土区公里路基工程的情况进行研究。结果显示,路基温度场分布不是和路基中心线呈轴对称分布,从路基中心线向左右两侧路肩保温效果逐渐降低,保温效果较低的位置主要为左右两侧路肩。将铺设长度设置为路基面+路肩下1/3路基边坡长度时,将会改变路基土中温度,并出现最高幅度的冻结线抬升。左侧路肩下部土体地温会随着泡沫混凝土保温层长度的增长而提高,同时后者还会提升冻深线。与此同时,左右路肩下部及路基中线土体冻结范围会随着路基面层铺设泡沫混凝土保温层厚度的增长而减小。按照路基边缘路肩向下延长1.35m的位置铺设泡沫混凝土保温层,厚度为75mm。该优化方案能够尽可能避免出现路面和路基的冻害,同时节约材料,成为同等地域环境下施工的有力支撑。
作为北方寒区一种常见的自然现象,季节性冻融能够改变农田土壤环境,影响自然界的物质循环和能量迁移过程。综述了冻融作用对土壤理化性质的影响,阐述了农田冻融土壤水、热、盐耦合运移机制,分析了农田冻融土壤环境演变机理,并对生物炭对农田土壤的调控效果进行了总结。最后提出未来农田土壤冻融过程水土环境效应理论与实践研究的重点。
为了研究在列车荷载作用下季节性冻土区桥墩和周围不同场地的振动特性,选取哈大高速铁路沿线桥墩及周围场地进行现场振动测试,利用经验模态分解(empirical mode decomposition,EMD)法和相关性分析方法对测试数据进行了滤波处理,并从时域和频域对振动信号进行分析。建立桥墩-桩基-周围场地有限元模型分析了桥墩右侧堆积填土的弹性模量和几何参数变化对振动传播的影响。研究结果表明:在列车荷载作用下桥墩与周围场地的振动特性明显不同,场地对振动有放大作用;桥墩和周围场地的振动频率集中在10~80 Hz,主频在35 Hz左右,这与列车轴重作用的频率一致;桥墩右侧堆积填土使其两侧的振动传播特性不同,堆积填土侧的振动加速度峰值大于未填土侧,堆积填土的弹性模量和几何参数变化使得地面不同位置的振动强度明显不同。
青藏高原是典型的高海拔季节冻土区,具有软弱结构面的岩质边坡的周期性冻融循环加剧了高原冻土区边坡的失稳。因此,通过建立高原冻土软弱结构面的强度与冻融循环之间的关系,得出两者的变化规律,在冻融条件下对西藏邦铺多金属露天矿软弱结构面的长期性能进行了通过三轴压缩试验研究。结果表明:软弱结构面的强度参数总体上随着冻融循环次数的增加而减小;再运用改进的西原模型验证了参数的长期拟合程度达到了90%以上。
以高寒半干旱区青海湖流域季节性冻土为研究对象,通过调查采样和室内分析,研究了坡向和坡位对不同深度土壤有机碳含量分布的影响。结果表明:阴、阳坡有机碳含量均随土壤深度增加而下降,但阳坡下降的幅度(64%)明显高于阴坡(44%)。阴坡土壤有机碳平均含量为81.99 g/kg,大于阳坡(61.84 g/kg);不同坡位,土壤有机碳分布特征因坡向而异,其中阴坡土壤有机碳平均含量表现为坡下(89.60 g/kg)>坡中(86.52 g/kg)>坡上(69.87 g/kg),而阳坡土壤有机碳平均含量表现为坡上(65.71 g/kg)>坡下(61.42 g/kg)>坡中(58.39 g/kg)。此外,坡位对不同深度土壤有机碳的影响程度在不同坡向也存在差异。阴坡坡位因子对深层土壤有机碳影响显著,而阳坡坡位因子对浅层土壤有机碳影响显著。一般线性模型结果表明,坡面土壤有机碳含量主要受土层和坡向的影响,可解释74.52%的变异性。
针对京沈客专TJ-8标段季节性冻土区路基工程特点,结合路基工程防冻胀技术原理,以及冻土地区现有工程冻害特征和表现形式,详细分析了客专路基在当地气候条件下的冻结深度,并依据当地原材料特点,提出路基防冻胀综合治理技术,细化了施工配合比,明确了各道工序的施工控制要点。此外,结合本工程的长期沉降观测数据分析,对路基质量进行综合评价,确保了京沈客专季节性冻土区路基结构的稳定性。
基于高速列车运行引起的轨道-桥梁-桥墩-季节性冻土区场地的地面振动和沉降问题,选取哈大高速铁路铁岭至四平段某桥墩及周围基础场地为测试段,对实测数据从时域和频域两方面进行分析,研究了桥墩及周围不同场地的振动特性,结果表明:桥墩和基础场地的振动特性存在很大的差异,基础场地对振动有放大效应,且不同基础场地对振动的放大效果也明显不同。结合实测概况建立了桥墩-基础场地有限元数值模型,分析桥墩及基础场地在不同季节的振动传播特性,以及基础场地土体内部的应力分布情况,并利用累积塑性应变模型对重复列车荷载作用下季节性冻土区基础场地的沉降变形进行分析,发现场地振动加速度峰值随与桥墩距离R的增大而衰减,且在冻结季的振动衰减速度明显小于非冻结季的;基础场地地表的累积沉降在距桥墩R=0.5 m处最大,且随着列车荷载作用次数的增加而增加,最后逐步趋于稳定。
以青藏铁路西格段季节性冻土区路基冻害为研究背景,在室内分普通和盐化两个试验段填筑路基实体模型,进行封闭系统中反复冻融循环条件下的模型试验,分析冻融循环条件下普通路基和人工盐化路基的温度和位移规律,并探讨水分、盐分的迁移规律。结果表明:路基土体温度与环境温度变化趋势一致,路基土体的温度滞后于环境温度约36 h;越靠近冷端的位置,温度波动范围越大,温度随着深度的增加逐渐减小,温差也随之减小,路基土体温度的波动范围约为环境温度波动的一半;温度是影响水分迁移的主要因素,水分迁移在路基顶面以下一定的范围内达到最大,越靠近冷端,水分迁移量越大;路基土盐化之后冻胀量减小约73. 9%,说明人工盐化路基土的方法可以整治季节性冻土区路基冻害。
抵御冻胀破坏一直是季节性冻土区渠道建设面临的技术难题。文章借助ANSYS专业有限元模拟分析系统,围绕季节性冻土区梯形衬砌渠道的温度场、移位场、应力场、基土置换的优化深度以及原材料的优化择取课题开展专题分析探究,把握不同换填深度和不同替换材料下的季节性冻土区梯形衬砌渠道应力应变规律,探索优化的基土置换深度及材料,为同类工程应用提供研究和技术参考。