针对季节性冻土区高地下水位分散性土渠道护坡的冻融破坏问题,系统开展了不同初始条件下分散性土在水分、温度和应力耦合作用下的冻融变形特性试验。结果表明:(1)冻结过程中,随温度降低,冻结锋面自上而下推进,土中水分向冻结锋面迁移并聚冰,冰层及冰透镜体主要分布于最大冻深的1/2~2/3区间;(2)孔隙水压力随温度呈周期性波动,且具有显著滞后效应;(3)相同条件下,干密度越大,冻胀率越大,融沉率越小,冻融累积变形量越小;(4)外水补给显著影响冻胀,有补给时冻胀率为无补给的3-4倍;(5)3次冻融循环后,上覆压力越大,冻胀率越小,融沉率越大,表明上覆压力可有效抑制冻胀变形。基于研究结果,建议在季节性冻土区分散性土渠道护坡的抗冻胀设计中,重点关注外水补给的影响,并综合采用保温、换填、排水、控制干密度及优化防护结构厚度等措施,以提升抗冻性能。
针对季节性冻土区高地下水位分散性土渠道护坡的冻融破坏问题,系统开展了不同初始条件下分散性土在水分、温度和应力耦合作用下的冻融变形特性试验。结果表明:(1)冻结过程中,随温度降低,冻结锋面自上而下推进,土中水分向冻结锋面迁移并聚冰,冰层及冰透镜体主要分布于最大冻深的1/2~2/3区间;(2)孔隙水压力随温度呈周期性波动,且具有显著滞后效应;(3)相同条件下,干密度越大,冻胀率越大,融沉率越小,冻融累积变形量越小;(4)外水补给显著影响冻胀,有补给时冻胀率为无补给的3-4倍;(5)3次冻融循环后,上覆压力越大,冻胀率越小,融沉率越大,表明上覆压力可有效抑制冻胀变形。基于研究结果,建议在季节性冻土区分散性土渠道护坡的抗冻胀设计中,重点关注外水补给的影响,并综合采用保温、换填、排水、控制干密度及优化防护结构厚度等措施,以提升抗冻性能。
针对季节性冻土区高地下水位分散性土渠道护坡的冻融破坏问题,系统开展了不同初始条件下分散性土在水分、温度和应力耦合作用下的冻融变形特性试验。结果表明:(1)冻结过程中,随温度降低,冻结锋面自上而下推进,土中水分向冻结锋面迁移并聚冰,冰层及冰透镜体主要分布于最大冻深的1/2~2/3区间;(2)孔隙水压力随温度呈周期性波动,且具有显著滞后效应;(3)相同条件下,干密度越大,冻胀率越大,融沉率越小,冻融累积变形量越小;(4)外水补给显著影响冻胀,有补给时冻胀率为无补给的3-4倍;(5)3次冻融循环后,上覆压力越大,冻胀率越小,融沉率越大,表明上覆压力可有效抑制冻胀变形。基于研究结果,建议在季节性冻土区分散性土渠道护坡的抗冻胀设计中,重点关注外水补给的影响,并综合采用保温、换填、排水、控制干密度及优化防护结构厚度等措施,以提升抗冻性能。
针对季节性冻土区高地下水位分散性土渠道护坡的冻融破坏问题,系统开展了不同初始条件下分散性土在水分、温度和应力耦合作用下的冻融变形特性试验。结果表明:(1)冻结过程中,随温度降低,冻结锋面自上而下推进,土中水分向冻结锋面迁移并聚冰,冰层及冰透镜体主要分布于最大冻深的1/2~2/3区间;(2)孔隙水压力随温度呈周期性波动,且具有显著滞后效应;(3)相同条件下,干密度越大,冻胀率越大,融沉率越小,冻融累积变形量越小;(4)外水补给显著影响冻胀,有补给时冻胀率为无补给的3-4倍;(5)3次冻融循环后,上覆压力越大,冻胀率越小,融沉率越大,表明上覆压力可有效抑制冻胀变形。基于研究结果,建议在季节性冻土区分散性土渠道护坡的抗冻胀设计中,重点关注外水补给的影响,并综合采用保温、换填、排水、控制干密度及优化防护结构厚度等措施,以提升抗冻性能。
针对季节性冻土区高地下水位分散性土渠道护坡的冻融破坏问题,系统开展了不同初始条件下分散性土在水分、温度和应力耦合作用下的冻融变形特性试验。结果表明:(1)冻结过程中,随温度降低,冻结锋面自上而下推进,土中水分向冻结锋面迁移并聚冰,冰层及冰透镜体主要分布于最大冻深的1/2~2/3区间;(2)孔隙水压力随温度呈周期性波动,且具有显著滞后效应;(3)相同条件下,干密度越大,冻胀率越大,融沉率越小,冻融累积变形量越小;(4)外水补给显著影响冻胀,有补给时冻胀率为无补给的3-4倍;(5)3次冻融循环后,上覆压力越大,冻胀率越小,融沉率越大,表明上覆压力可有效抑制冻胀变形。基于研究结果,建议在季节性冻土区分散性土渠道护坡的抗冻胀设计中,重点关注外水补给的影响,并综合采用保温、换填、排水、控制干密度及优化防护结构厚度等措施,以提升抗冻性能。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。
为了研究季节性温度边界条件对冻土路基融化固结特性的影响,对三维非线性大变形融化固结理论进行修正,引入季节性温度边界条件,并采用摩尔库伦准则描述土体融化后进入塑性阶段的沉降变形,建立了能够考虑季节性温度边界条件影响的三维非线性塑性融化固结理论。在此基础上,采用FLAC3D软件对所建理论模型进行数值化,并以青藏公路某段高含冰量路基为例,分析了其在季节性温度边界条件下的融化固结规律,最后结合实测数据验证了所建理论模型的有效性。研究结果表明,冻土路基的沉降变形随着地表温度的季节性变化而呈现出周期性的变化规律,这是季节性温度边界条件下冻土路基融化固结规律的最显著特征。通过对固结过程中孔隙水压力分布的研究发现,路基浅层融化区域内的孔隙水在运营初期已经消散,而在之后长时间的运营过程中,冻土路基融沉的持续发展主要是由于融化锋面处新融化的孔隙水的消散。