多年冻土是冰冻圈系统的重要组成成分,其热状态和冻融过程的水热交换深刻影响高寒地区的水源涵养功能、生物地球化学循环和生态环境稳定。多年冻土区大气-地面的能量交换过程对气候变化及生态水文等冰冻圈相关环境要素的稳定及动态变化具有决定性作用。地面温度是高山多年冻土区大气-地面能量平衡的重要指标和冻土模拟制图的关键驱动条件。本文从冻土-气候关系、地面温度空间分异特征及其影响因素、地面温度监测和冻土模型等方面综述了高山多年冻土区地面温度主要的研究进展;并就空间异质性极强条件下植被、积雪、土壤等局地因素对高山多年冻土区气温和地面温度差的影响,以及地面温度的冻土模拟应用进行了展望。研究认为,地面温度是冻土热状态模拟制图的上边界条件,是比气温和遥感陆面温度更有效的多年冻土存在状态的指标,同时也是比钻探测温更简单经济的多年冻土热状态调查手段,然而过去研究不多,因此亟待开展高山多年冻土区地面温度及其与相关下垫面要素的长期协同监测。基于气温、遥感陆面温度进行多年冻土热状态的中大比例尺精准模拟及其时空分布制图,应充分考虑植被和积雪等因素对气温和陆面温度的定量削减作用,否则易造成多年冻土及活动层模拟与实际分布的较...
在大气-地面-冻土之间存在复杂的水热变化过程,降水是青藏高原地区主要的水分补给来源,在浅层形成水热变化的不连续层。通过对北麓河地区降水和工程路面(沥青路面、砂砾路面)、天然地面(高寒草原、高寒草甸)浅层(0~80cm)温度数据的原位监测,分析在不同降水量和不同时段浅层的温度变化,结果表明:北麓河地区年降水量逐年增加,增加速率为22.9mm·a-1。降雨主要集中在5~9月。白天地温对降水的响应比夜间强烈。工程路面夜间的温度变化大于天然地面。在相同降水条件下,10:00~15:30时段的温度变化量大于16:00~18:00时段。随着降雨量的增加,温度下降幅度增大。砂砾、高寒草原、高寒草甸地面地温对降水的响应深度范围为0~30cm。受路面结构中隔水层的影响,沥青路面为0~20cm,且5cm深度温度的变化幅度大于地表。为进一步研究不同地面类型不同水热传输模式层结的划分提供数据基础。
以建昌县气候监测站1961—2012年逐日气温、地面温度及冻土深度资料为基础,运用现代气候统计诊断技术,分析了该地区霜期设施农业生产期气温、地面温度、最大冻土深度变化趋势和突变特征及对设施农业的影响。结果表明:自1961年以来,建昌县霜期设施农业生产期平均气温、平均地面温度明显升高,倾向率分别为0.32℃/10 a、0.29℃/10 a,气温在1982年突变性升高,突变之后气温平均升高1.2℃;地面温度在1989年突变性升高,平均升高1.1℃;最大冻土深度明显变浅,倾向率为-4.63 cm/10 a,1985年突变性变浅,突变后冻土最大深度平均变浅18.3 cm。当气温每升高1℃,冻土最大深度将变浅9.6 cm。霜期温度升高等于热量资源的增加,有利于设施农业的发展,冻土深度变浅可减少大棚内植物冻害。研究结果可为大力发展设施农业日光温室提供气候依据。
工程研究的主要目标是获得有关自然条件下季节融化层信息;找出下方道路路基冻土的组成和性质;研究堤岸基础土壤(解冻和冷冻)的热状况和识别配置技术以及融区的厚度;分析融区和道路变形之间的连接。阿穆尔公路的成岩基地研究采用了冻土地质工程监测手段。根据所获得的结果显示,多年冻土的自然技术动态区域概况已经形成。研究发现了永久冻土层的高含冰量和融区厚度的道路路堤高度,同时建立了底层土壤的组成和水含量的关系。相对于该地区的自然环境,指出了在自然条件下的全球区域气候变化中高含冰量冻土的大贯量。
根据传热理论,在现有JGJ118—98《冻土地区建筑地基基础设计规范》中采用的无通风管基础的冻土地基的最大融化深度的计算公式基础上,推导出有通风管基础按容许地基土逐渐融化原则设计的冻土地基最大融化深度的计算公式,首次提出了等效地面温度和等效地面温度系数的概念。首次建立室内采暖条件下通风管复合基础的传热数学模型,并在此模型基础上采用有限单元法对通风管复合基础进行数值模拟分析结合理论推导的方法,得出不同室内地面温度、不同通风管间距时的通风管基础中心下的温度沿深度分布曲线及54个等效地面温度数据,依据最小二乘法原理对以上数据拟合出工程广泛采用的通风管直径为300mm的通风管基础的等效地面温度系数计算公式,从而提出建筑物通风管基础通风面积计算方法,由实际工程设计验证了该计算方法的可靠性与实用性。