在列表中检索

共检索到 4

路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。

期刊论文 2023-12-16

为满足季节性冻土区路基冻胀应急抢险需求,设计1款路基专用直接膨胀式地源热泵供热装置,并通过连续运行供热和间歇运行供热试验研究装置的供热性能。结果表明:地源热泵供热装置最高供热温度可达90℃,最低吸热温度可达-15℃;间歇供热条件下,供热段平均供热温度随启停时间比的增大而升高,吸热段平均吸热温度随启停时间比的增大呈先降后升的规律;土体传热效率随着时间延长和与热泵距离的增大而降低,热泵运行第1天的热作用半径为0.87 m;热泵制热系数随启停时间比的减小而增大,最高达3.0以上,启停时间比过高时热泵能效性和地热能收集效果较差,而启停时间比过低时供热防冻效果较差。针对单线铁路路基冻害快速抢险需求,建议装置供热功率定为1.0~2.0 kW,布设间距取1.5~3.0 m,启停时间比先设为2 h∶1 h,然后根据冻胀缓解程度逐步降低启停时间比。

期刊论文 2021-11-30

针对路基的冻胀现象,结合可再生能源利用技术,提出一种更具实时性和有效性的路基防冻胀方法,即路基主动供热方法。基于太阳能和浅层地热能的资源性条件,设计了分别采用这2种可再生能源作为热源的路基专用供热系统,制作了样品并进行了性能验证试验。结果表明:采用可再生能源作为热源的路基供热方法可在冬季主动向路基输入热量来实时防控由气候引起的过冷状态;太阳能真空管集热技术和地源热泵技术具有小型化、高效化等有利于路基应用的优势,冻土区丰富的太阳能资源和浅层地热能资源可以解决热源的分散供应问题。所设计的2种路基专用供热系统均为小型集成化系统,适合采用分布式"孤岛"运行方式,路基专用太阳能供热系统的日均供热温度可达20~40℃,路基专用地源热泵系统可以自动化提供30℃、45℃、60℃等不同水平的日均供热温度,均可满足路基防冻胀要求。可再生能源供热技术可以为解决冻土区路基防冻胀问题提供一种新途径。

期刊论文 2021-06-29 DOI: 10.19911/j.1003-0417.tyn20201006.01

为解决季节性冻土区路基结构因冻解破损而发生的各种病害,利用地源热泵系统改变路基结构温度场。以109国道青海省季节性冻土区路基为研究实例,运用ANSYS模拟分析109国道季节性冻土区原始温度场,并分析了地源热泵路基的工作原理及运行效果;介绍了地源热泵系统形式及设计计算中的有关问题,得出地源热泵路基系统的设计参数;利用ANSYS有限元法对地源热泵路基的水平埋管进行模拟分析,通过对比分析得出路堤中水平埋管宜分2层布置(-1 m处埋置4根,每管间距为2 m;-3.5 m处埋置5根,每管间距为4 m)。在上述设计方案下,该地区在全年最冷时刻路基易发生冻胀区域的地温超过0℃。通过模拟分析得出,地源热泵路基是一种新型路基结构,该系统对于防治季节性冻土路基冻胀病害具有积极作用。

期刊论文 2014-08-20
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页