以青藏高原查拉坪地区一处热融湖塘(40 m×50 m,最大深度为1 m)为研究对象,由实测数据对比分析了热融湖塘与天然地表相同深度的温度变化特征.结果表明:与天然地表相比,热融湖塘融化时间长,冻结时间短,且存在接近4℃的水温变化;受太阳辐射及热对流的影响,垂向水温梯度仅在水表从4℃降温及冻结阶段较大,其余时段接近0;湖底年均温度比相同深度的天然地表高约6.4℃,湖底下部存在约14 m深随时间发展的融区,土体吸热增大,放热减小;热融湖塘2.5~3.0 m土体的年内热交换为19592.0 k J/m2,约是天然地表的230倍,其中吸热量及放热量分别为后者的1.4倍及8.7%.湖塘下部的融化夹层是深层冻土的主要热源,湖塘对下部土体放热的抑制作用是湖塘对土体产生热影响的主要原因.
祁连山冻土区木里盆地三露天井田自2008年首次钻采到天然气水合物实物样品以来,实现了中低纬度高山冻土区天然气水合物勘探的重大突破。天然气水合物钻孔DK-9于2013年发现水合物,通过对该孔长期地温实时监测,获得了稳态的地温数据。结果表明,祁连山多年冻土区聚乎更矿区三露天井田冻土层底界为约163 m,冻土层的厚度达约160 m,冻土层内的地温梯度为1.38℃/100 m,冻土层以下的地温梯度达4.85℃/100 m。根据天然气水合物形成的温-压条件分析,聚乎更矿区具备较好的天然气水合物形成条件,天然气水合物稳定带底界深度处于510~617 m之间。
利用热平衡积分法求出了一类伴有相变的一维热传导方程在具有稳定地中热源条件下的融化深度Xpb与所用的时间t的关系,并根据Alaska北极Barrow地区的冻土与融湖资料,摄动深度δ与Xpb的比,ξ为25,进而用所得解求得了融湖下底部冻土融化深度随时间变化的曲线。
天然气水合物是一种新型清洁能源,赋存在多年冻土区和海洋沉积物等低温高压环境中。青藏高原多年冻土面积占高原总面积的一半以上,是可能的天然气水合物赋存区。根据青藏高原多年冻土条件和天然气水合物形成的热力学条件,讨论了多年冻土地温梯度、冻土厚度与天然气水合物形成的热力学条件之间的关系和青藏高原存在天然气水合物的可能性。结果表明,青藏高原多年冻土区基本具备形成天然气水合物的热力学条件,最适宜的热力学条件是多年冻土地温梯度接近或略大于多年冻土底板附近融土的地温梯度,且融土地温梯度越小,越容易形成天然气水合物。估算得到天然气水合物最浅的顶界埋深为74m左右,最深的底界埋深达上千米。