在冻融循环过程中,环境温度的变化对路基土体的物理力学特性及路基的水热过程影响显著,反复的冻胀与融沉作用严重削弱了路基的承载能力、变形协调性及长期服役性能。基于此,本研究建立了粉质黏土路基(对比路基)和地聚物-剑麻纤维协同固化土路基(措施路基)断面,探究了冻融循环作用下两种路基温度、水分、热通量以及变形变化过程,评估了地聚物-剑麻纤维协同固化土路基的冻胀防治效果。试验结果表明:随着冻融循环次数的增加,路基低温区域从顶部逐渐向下部扩展,高温区域逐渐缩减。路基表面热交换迅速,受环境温度变化的影响也更明显。粉质黏土路基的残余体积未冻水含量高于地聚物-剑麻纤维协同固化土路基。此外,地聚物-剑麻纤维固化土路基的净变形变化小于粉质黏土路基,随着冻融循环次数的增加位移的变化逐渐趋于稳定。研究结果可为提升寒区路基的抗冻害能力、长期稳定性和服役性能提供科学依据。
为研究寒区气候变化对地聚物固化土耐久性的影响,以偏高岭土、碱性激发剂固化的粉质黏土为原材料,分别以剑麻纤维和纳米SiO2为改良材料,制备了改性地聚物固化土。通过冻融循环试验、无侧限抗压强度试验、扫描电镜试验和X射线衍射试验,研究了冻融循环作用下改性地聚物固化土的力学性能、微观结构特性和所选取材料的可持续性。研究结果表明:第一次冻融循环对改性地聚物固化土的力学特性影响最为显著;养护过程中剑麻纤维会抑制试样的水化反应,而纳米SiO2会促进试样的水化反应,冻融循环过程中改性地聚物固化土的水化反应仍在进行。此外,剑麻纤维的加入可显著降低地聚物固化土的碳排放量,纳米SiO2可有效降低地聚物固化土的碳排放指数和经济效益指数。
为研究寒区气候变化对地聚物固化土耐久性的影响,以偏高岭土、碱性激发剂固化的粉质黏土为原材料,分别以剑麻纤维和纳米SiO2为改良材料,制备了改性地聚物固化土。通过冻融循环试验、无侧限抗压强度试验、扫描电镜试验和X射线衍射试验,研究了冻融循环作用下改性地聚物固化土的力学性能、微观结构特性和所选取材料的可持续性。研究结果表明:第一次冻融循环对改性地聚物固化土的力学特性影响最为显著;养护过程中剑麻纤维会抑制试样的水化反应,而纳米SiO2会促进试样的水化反应,冻融循环过程中改性地聚物固化土的水化反应仍在进行。此外,剑麻纤维的加入可显著降低地聚物固化土的碳排放量,纳米SiO2可有效降低地聚物固化土的碳排放指数和经济效益指数。
为研究寒区气候变化对地聚物固化土耐久性的影响,以偏高岭土、碱性激发剂固化的粉质黏土为原材料,分别以剑麻纤维和纳米SiO2为改良材料,制备了改性地聚物固化土。通过冻融循环试验、无侧限抗压强度试验、扫描电镜试验和X射线衍射试验,研究了冻融循环作用下改性地聚物固化土的力学性能、微观结构特性和所选取材料的可持续性。研究结果表明:第一次冻融循环对改性地聚物固化土的力学特性影响最为显著;养护过程中剑麻纤维会抑制试样的水化反应,而纳米SiO2会促进试样的水化反应,冻融循环过程中改性地聚物固化土的水化反应仍在进行。此外,剑麻纤维的加入可显著降低地聚物固化土的碳排放量,纳米SiO2可有效降低地聚物固化土的碳排放指数和经济效益指数。
为研究寒区气候变化对地聚物固化土耐久性的影响,以偏高岭土、碱性激发剂固化的粉质黏土为原材料,分别以剑麻纤维和纳米SiO2为改良材料,制备了改性地聚物固化土。通过冻融循环试验、无侧限抗压强度试验、扫描电镜试验和X射线衍射试验,研究了冻融循环作用下改性地聚物固化土的力学性能、微观结构特性和所选取材料的可持续性。研究结果表明:第一次冻融循环对改性地聚物固化土的力学特性影响最为显著;养护过程中剑麻纤维会抑制试样的水化反应,而纳米SiO2会促进试样的水化反应,冻融循环过程中改性地聚物固化土的水化反应仍在进行。此外,剑麻纤维的加入可显著降低地聚物固化土的碳排放量,纳米SiO2可有效降低地聚物固化土的碳排放指数和经济效益指数。
为研究寒区气候变化对地聚物固化土耐久性的影响,以偏高岭土、碱性激发剂固化的粉质黏土为原材料,分别以剑麻纤维和纳米SiO2为改良材料,制备了改性地聚物固化土。通过冻融循环试验、无侧限抗压强度试验、扫描电镜试验和X射线衍射试验,研究了冻融循环作用下改性地聚物固化土的力学性能、微观结构特性和所选取材料的可持续性。研究结果表明:第一次冻融循环对改性地聚物固化土的力学特性影响最为显著;养护过程中剑麻纤维会抑制试样的水化反应,而纳米SiO2会促进试样的水化反应,冻融循环过程中改性地聚物固化土的水化反应仍在进行。此外,剑麻纤维的加入可显著降低地聚物固化土的碳排放量,纳米SiO2可有效降低地聚物固化土的碳排放指数和经济效益指数。
针对碳酸盐渍土区岩土材料的膨胀、溶陷和冻融损伤等病害,综述了碳酸盐渍土物理、化学和工程特性的研究现状。针对如何改变碳酸盐渍土对工程的不利影响,归纳了工程上常用到的固化碳酸盐渍土的方法,并分析了不同方法的固化机理。综述了不同方案固化后的碳酸盐渍土的物理性质、力学性质和在寒区的表现。对固化碳酸盐渍土的发展前景进行了展望,提出了工程上碳酸盐渍土研究的潜在方向。
针对碳酸盐渍土区岩土材料的膨胀、溶陷和冻融损伤等病害,综述了碳酸盐渍土物理、化学和工程特性的研究现状。针对如何改变碳酸盐渍土对工程的不利影响,归纳了工程上常用到的固化碳酸盐渍土的方法,并分析了不同方法的固化机理。综述了不同方案固化后的碳酸盐渍土的物理性质、力学性质和在寒区的表现。对固化碳酸盐渍土的发展前景进行了展望,提出了工程上碳酸盐渍土研究的潜在方向。
针对碳酸盐渍土区岩土材料的膨胀、溶陷和冻融损伤等病害,综述了碳酸盐渍土物理、化学和工程特性的研究现状。针对如何改变碳酸盐渍土对工程的不利影响,归纳了工程上常用到的固化碳酸盐渍土的方法,并分析了不同方法的固化机理。综述了不同方案固化后的碳酸盐渍土的物理性质、力学性质和在寒区的表现。对固化碳酸盐渍土的发展前景进行了展望,提出了工程上碳酸盐渍土研究的潜在方向。
为解决使用水泥固化冻土时热扰动大及水泥带来的碳排放等问题,采用电石渣作为碱激发剂激发偏高岭土基地聚物固化土质,研究偏高岭土掺量、电石渣掺量、养护温度和养护龄期对固化土抗压强度的影响规律,并与水泥固化土进行平行对比,采用X射线衍射和电镜扫描等试验方法进行微观分析,揭示其固化机制。试验结果表明:偏高岭土和电石渣均存在最优掺量,当掺量小于最优掺量时发挥积极作用,超过时则会产生反作用。其中偏高岭土和电石渣的最优掺量分别为10%和6%,最优掺量试样在20、–2、–10℃养护28 d的抗压强度分别为3.783、1.164、0.901 MPa。电石渣激发偏高岭土基地质聚合物主要产物有无定型的水化硅酸钙、水化铝酸钙凝胶,是固化土抗压强度提升的主要原因。地聚物固化土在–2℃和–10℃养护28 d的抗压强度相较于在20℃养护28 d分别降低69%和76%,冻结状态下土体冰晶扩张土孔隙,同时促使裂缝生长,降低地质聚合反应效率,聚合产物数量减少。试样抗压强度随养护龄期的增加而增加,地质聚合反应产生的硅铝网格结构随养护龄期的增加而增多,使土体内部结构相互交织联结,形成更加密实的结构。地质聚合反应受到低温影响较小...