寒区、严寒区隧道的冻胀是影响隧道全周期寿命的重要问题。围绕某中高纬度的严寒区客运专线建设需要,研究了隧道浅埋洞口围岩冻融圈岩土体不同冻胀率下的衬砌结构力学响应,提出了临界冻胀率条件,即(1)衬砌结构最大拉应力超过材料抗拉强度标准值;(2)衬砌结构发生超过规定的位移值。对于该工程浅埋洞口岩质围岩和土质围岩,判定临界冻胀率分别为2.00%和3.10%,并采取注浆封闭冻融圈输水通道、设置排水盲管、隧道结构铺设保温板等技术措施,保证了洞口运维期的安全。
近年来,随着“西部大开发”战略和“一带一路”倡议的深入实施,中国的隧道、公路和铁路建设逐渐向高海拔和寒冷的西部地区延伸发展。寒冷地区隧道向特长、特高趋势发展,然而在寒冷地区修建隧道具有海拔高、昼夜温差大、冬季长时间处于负温等特点,恶劣的气候条件与施工环境给隧道施工技术带来极大挑战的同时,后期隧道也因其地理位置以及气候环境而导致冻害频发,致使隧道主体结构的安全性、实用性和耐久性出现不同程度的影响。通过寒区隧道冻害的原因来探讨寒区隧道的冻害机理,从而了解其规律并提出相应的应对措施。
为建立围岩不同尺度下缺陷冻胀起裂的破坏判据,根据弹性力学和断裂力学并结合冻胀力值得到宏细观缺陷发生冻胀破坏判据,建立含宏细观缺陷的寒区隧道围岩冻胀破坏临界温度的计算模型。依托大坂山隧道算例,分析不同参数对细观孔隙和宏观节理冻胀破坏临界温度的影响规律。结果表明:细观孔隙冻胀破坏临界温度随主干孔轴线直径增大而显著增大;而次孔轴线等效直径增大对临界温度的影响则较小,其主要作用是与主干孔形成主干-旁枝型孔隙结构。宏观节理冻胀破坏临界温度随节理长度和隧道断面半径增大而增大;随节理倾角增大先减小后增大,在倾角为40°时出现峰值临界温度。
为研究寒区隧道多孔围岩在低温冻胀作用下的破坏判据,基于冻岩力学、断裂力学和细观损伤力学求解围岩冻胀力值和应力强度因子,将岩石应力腐蚀极限代替断裂韧度作为起裂判据;在单次冻胀作用下,对易发生冻胀破坏的“主干-旁枝型”孔隙结构建立围岩冻胀破坏判据;在持续冻胀作用下,将其视为冻融循环作用,考虑循环过程中岩石碎屑流失的影响效应并建立围岩冻胀破坏判据。依托西藏某寒区隧道验证失稳判据的可靠性并分析不同参数对围岩应力强度因子的影响作用。结果表明:围岩应力强度因子与主干孔轴线直径和水压力呈正比关系,前者初期增长速率显著大于后期,后者则几乎呈线性变换;与围岩环境温度和韧度比呈反比关系,且温度对围岩失稳的影响效果更明显。
研究目的:近年来,在我国高纬度季节冻土区,围岩冻胀导致隧道衬砌开裂、春融期渗漏水等病害时有出现,严重影响隧道和列车运营安全。本文以我国西北地区某铁路线隧道为例,采用现场测试、室内试验、数值模拟等手段研究季节冻土区隧道冬季边墙纵向开裂原因及其主要影响因素。研究结论:(1)修建在强风化砂泥岩地层中的隧道,当围岩含水率为12. 3%、围岩冻结深度达60 cm时,在冬季持续负温作用下,边墙最大拉应力为2. 28 MPa,大于C30混凝土的极限抗拉强度,边墙会出现水平冻胀裂缝,若考虑衬砌承担部分围岩荷载,边墙纵向开裂程度会加剧;(2)冻胀力荷载作用下,衬砌开裂具有对称性、季节性、积累性等特点,裂缝在冬季出现,分布在边墙中间位置,气温回升后,具有收缩性;(3)季节冻土区围岩冻胀力荷载计算宜以围岩冻结圈厚度和含水率为主要指标;(4)本研究成果可供季节冻土区隧道设计、运营维护参考。
青海省共和至玉树公路鄂拉山隧道出口段为Ⅴ级围岩、存在多年冻土浅埋段,给隧道施工造成很大困难,施工时正处于本地的夏季、雨季,洞门开挖难度大,安全风险高,因此,采用中隔壁导坑施工。论文介绍了中隔壁导坑法的施工思路、施工方法、施工工艺,给出了围岩支护参数的具体数值和工程质量控制重点,为类似工程提供参考。
季节性冻土的冻融变化是隧道产生冻害的主要原因,隧道温度场分布规律研究是季节性冻土区隧道冻害研究的技术基础。以运营的准池铁路杀虎口隧道为工程背景,通过建立数值模型对隧道温度场进行分析。研究结果表明:围岩温度场随外界气温的季节性变化而呈周期性变化,每年11月至来年3月份为冻结期,10月和4月为反复冻融期;每年相同时间的围岩冻结深度随年数的增加而逐渐增大,7~10年达到基本稳定期。
在多年冻土区隧道施工过程中,围岩温度场和冻融圈的控制是保证隧道围岩稳定性和结构安全性的关键因素。文章建立了考虑水泥水化放热的隧道围岩二维非稳态温度场的传热模型,在此基础上分析了喷射混凝土前后围岩温度场的变化规律,以及喷混凝土的施作时机与厚度对围岩冻融圈的影响规律,并与现场实测结果进行了对比分析。研究结果表明,计算结果的整体趋势与现场实测值吻合,距离洞壁0.5 m以外的围岩温度,二者误差不超过0.5℃。在喷射混凝土之前,各深度的围岩温度呈现缓慢增长趋势。喷混凝土施工完成后,由于水泥水化热影响,距洞壁深度1.0 m以内的围岩温度呈现陡升—下降—趋于稳定的规律,且当喷混凝土施工每延迟1 d,或其厚度每增加5cm时,围岩冻融圈深度增加约10 cm。
青藏铁路多年冻土隧道处于高海拔、高寒及冻土的特殊环境中,冻土的热稳定性是多年冻土隧道围岩稳定的保障。通过对多年冻土隧道毛洞的融化深度及冻土围岩融化圈深度对隧道稳定性的影响分析,提出了冻土隧道施工中保证围岩稳定及施工安全的主要措施。
针对青藏铁路风火山冻土隧道地质条件和气候条件特殊,隧道内气温温度高于围岩温度容易引起隧道围岩融塌的问题,分析了引起隧道工作面温度升高的原因,提出了一种盐水-空气复合不耦合装药结构,并进行了理论研究和模拟试验研究。结果表明,该装药结构既能降低隧道工作面的温度,也能减少爆破对隧道围岩的损伤,隧道现场周边眼应用爆破效果明显。