盐渍土在冻结过程中,结构孔隙中的盐溶液逐渐转变为盐溶冰,盐渍土结构由之前的"土骨架结构"变为"土-盐溶冰骨架结构"导致力学行为发生了较大变化。以张掖地区某道路工程盐渍土路基填料为研究对象,通过低温冻土三轴剪切试验,分析了不同冻结时长、不同冻结温度下盐渍土的变形特性及本构模型。研究了冻结盐渍土的Duncan-Chang模型参数,基于Duncan-Chang模型利用SPSS回归分析建立了冻结盐渍土主应力差(σ1-σ3)及切线模量E_t与温度T和围压σ3的多因素耦合模型。研究发现:(σ1-σ3)-ε1曲线呈3阶段发展,随着冻结时间的增加,冻结温度降低,主应力变差,黏聚力及内摩擦均增大;耦合模型参数a1和b1与温度T呈正相关,与围压σ3呈负相关,其主导变量均为围压σ3。最后将耦合模型计算结果与试验结果对比,发现耦合模型能够较好地预测计算冻结盐渍土的本构关系。
在冻土地层钻探过程中,不合理的作业方案可能引发井壁坍塌、井口沉降等一系列工程问题,而弄清深层冻土力学演化规律是施工设计的基础。为此,用漠河冻土重塑了不同深度冻土的模拟岩样,开展了不同围压、温度条件下的冻土三轴力学试验,分析了不同条件下的冻土应力–应变曲线特征。通过多元回归方法对冻土强度进行了统计分析,进一步构建了冻土强度准则。研究发现:模拟岩样的应力–应变曲线整体呈非线性变形特征,在冻结状态下,温度、围压对土体强度起主要作用;非冻结状态下,其强度由围压和土体深度决定;冻土强度由土体骨架强度和孔隙中冰的胶结强度构成,其骨架强度满足MohrCoulomb强度准则,内聚力、内摩擦角随深度增加而增大;孔隙中冰的胶结强度随环境温度降低而增强,随围压增加呈先增强后减弱的趋势。基于此构建了漠河冻土强度准则,验证结果表明,可以较好地表征漠河冻土融化–冻结状态下的强度分布。
为了研究多年冻土区地温变化规律及L型热棒温度调控效能,以公路热棒群降温工程措施为研究对象,通过热传导理论和非线性分析方法,建立了不同监测时段的地温波动预测模型,评价了利用热棒工程措施处治试验段多年冻土路基的降温能效。研究结果表明:热棒作用范围较大,有效影响半径可达5.25m。不同监测时段的冻土地温变化规律略有区别,深度在6m范围内,各测孔地温变化最大降幅达82.1%,6m以下深度范围内,地温逐渐趋于0℃以下。热棒作用初期,多年冻土路基横向地温呈差异化分布,但随着热棒温控效应的增强,有效影响半径内温度调控效果明显,横向地温分布差异性减弱,逐渐趋于较稳定的年平均地温。多年冻土区地温预测值与实测值相关系数均在0.99以上,预测效果良好。研究成果可为冻土路基地温预测、变形监测和降温措施制定提供借鉴。
导热系数是冻土热学性质中一项重要物理指标,它反映了土体传递温度的能力,是管道温度场以及下覆冻土融化圈的重要影响因素。导热系数的测量方法有很多,但不同试验方法对同一种土所测得的结果却存在较大差异。分别采用热线法、热流计法和比较法对中俄原油管道沿线的冻土原状样与扰动样进行了导热系数的测定,并对试验结果进行了回归分析。通过对比不同试验方法、不同土质类别等因素对导热系数的影响,分析对中俄原油管道工程沿线不同类型的管道地基土所采用的每种测量方法的适用范围。试验结果表明:对于同一种土,热线法的导热系数试验结果最大,热流计法的试验结果最小,而原状土样的试验结果则大于扰动土样的试验结果。可见,对细粒土扰动样的导热系数测量宜采用热线法,对细粒土原状样的导热系数测量宜采用比较法;而粗粒土由于受含泥量的影响,对扰动样的导热系数测量宜采用热流计法,对原状样的导热系数测量宜采用比较法。
冻土融沉是目前工程建设中危及建筑物安全稳定的最大问题。文章依托黑龙江省珲乌高速公路,对其沿线勘察钻孔所取冻土原状样进行融沉压缩试验,通过对数据进行回归分析,研究土样的融沉特性与含水率、干密度之间的关系,并结合实际工程经验提出防治措施,为冻土区高速公路的修建、运营及维护提供参考依据。
为了研究多年冻土区地温分布及其演化规律,基于国道G314线布伦口-红其拉甫段路基地温现场监测资料,采用热传导理论和非线性分析方法对沿线多年冻土地温数据进行回归拟合,建立了不同地段的地温波动预测模型。研究结果表明:不同监测时段的冻土地温变化规律基本相同,在2~3.5m深度范围内,温度降幅较大;3.5m以下温差变化相对缓慢,在0℃线左右波动,并逐渐趋于稳定。多年冻土地温预测值与实测值相关系数均在0.96以上,预测效果良好。研究成果可为冻土路基地温预测、变形监测和降温措施制定提供参考。
大兴安岭地区冻土冻胀型冻害对浅埋式石油管道的安全稳定运行威胁很大。目前国内有关研究多采用闭式冻胀模拟试验,试样的含水率、干密度等因素是假设不变的,相比之下,采用各因素随试验进展而不断变化的的开式冻胀试验更能反映实际冻胀型冻害。为此,对中俄原油管道沿线5种冻土进行了开式冻胀模拟试验,测定了各种土料冻胀率与含水率,并据此分析了二者的关系,同时与闭式冻胀试验结果进行了对比分析,还应用限制位移法测定了法向冻胀力,并与静力平衡法试验结果进行了比较和差异显著性检验。试验结果表明:(1)开式冻胀试验的冻胀率大于闭式冻胀试验的冻胀率;(2)细粒土的冻胀率对土料冻胀率的影响十分显著,并且土料的毛细管作用或抽吸作用越强烈,冻胀率就越大;(3)粗粒土的冻胀率主要受含泥量的影响,其冻胀率比细粒土小;(4)法向冻胀力的大小与试验方法和试样高度的关系密切;(5)开式冻胀试验方法更适用于大兴安岭地区管道地基土的冻胀研究。结论认为:该区多年冻土区管道垫层和挖填层的土料应选用含泥量较少的砂砾或碎石,且需要采用塑性较大的黏性土做好防排水管堤。
为了准确掌握沥青路面温度场的分布特点和变化规律,在季节性冻土地区观测某段道路实测温度两年多时间,分析全年路段的温度变化情况,以及夏季和冬季全天具体的实测温度;并在此基础上,结合气象资料,分析温度场差异的原因以及影响因素。对沥青路面温度场进行研究,采取回归分析的方法,引入气温、太阳辐射等因素,建立路表的预估模型。考虑道路不同深度处的温度,引入深度衰减因子;并考虑时间的影响,建立全年日平均温度模型。将实验数据与预估数据比较表明:该模型具有较好的精确性与实用性。
基于青藏高原多年冻土与外部环境间复杂耦合换热过程分析,遴选高程、纬度、考虑坡向与坡度影响的等效纬度和植被状况,及年平均地表温度等因素作为影响多年冻土年平均地温的主要因子,并利用高精度遥感数据,初步获取了青藏高原工程走廊带各因子的基本性状分布。利用青藏公路与青藏铁路沿线共计127个年平均地温实测数据,运用Logistic回归和线性回归方法分别建立了青藏高原工程走廊带多年冻土年平均地温预估模型和多年冻土与融区分布的Logistic概率辨识模型,最后运用该模型构建了青藏高原工程走廊带现阶段多年冻土区划,并分析了地温的空间分布规律。结果表明:多年冻土地温预测值与实际观测值拟合度较高,且该模型较为准确地判断了融区、高温冻土、低温冻土的分布现状,与实际情况吻合较好,模型预估结果较准确。
为减少季节性冻土地区公路在冻胀作用下产生的破坏,对公路路面抗冻设计方法进行了研究。通过对公路冻深和气象资料相关性的分析,提出了公路按冻结指数和潮湿系数进行二级区划的公路冻区划分;在分析各国已有研究成果的基础上,提出了改进的大地冻深和公路冻深计算公式;根据路面在路基土冻胀作用下的受力状态,提出了路面抗冻破坏的设计方法和计算公式。结果表明:公路冻区的划分明确了公路抗冻设计的目的;改进的公路冻深计算方法和路面抗冻设计方法用于路面抗冻设计更加准确,可有效减少路面冻胀破坏。