为探究微型水泥钢管桩在多年冻土地区的适应性,以某输油管道阀室建筑基础项目为依托,通过现场试验和数值模拟研究桩基的承载模式及桩周土的回冻规律。研究表明,桩基荷载沉降曲线变形较缓,承载模式表现出摩擦桩特性,且承载力满足设计要求;水泥入模温度5℃,施工完成后,桩周土体融化圈在第5d时达到峰值,第36d完全消失,桩周土体重新回冻;桩基水化热影响最大半径因位置差异而存在不同,桩周土体初始温度最高的位置影响半径最大,约为2.9倍桩径;与大直径桩基相比,微型水泥钢管桩的回冻时间和影响半径分别约为大直径桩基的1/4和1/3。研究结果表明,在多年冻土地区微型水泥钢管桩具有较好的适应性。
为研究多年冻土区输电线塔基锥柱基础在不同季节施工条件下其地温的整体回冻过程,以及不同季节施工对多年冻土的扰动特点,从保持多年冻土地温稳定性的角度优化大开挖类基础施工时期,采用数值模拟的方法,以青藏直流输电工程为背景,利用查拉坪地区地质及气象资料,并选择了典型月份(1月、4月、7月和10月)对锥柱基础不同季节施工后早期地温场进行了计算分析。结果表明:秋冬季(10月和1月)施工后,锥柱基础周围土体将保持冻结,其中1月施工后最快10 d回填区土体和天然冻土的温度差异即可消失,回填土热扰动较小;春夏季(4月和7月)施工会增大回冻期活动层深度和基础底部的融化深度,特别是7月施工可使活动层深度降低至基底(4.0 m),而4月施工由于增高了回填土土体温度,导致整个回冻时间长达195 d,不利于基础的重新冻结和后续工作的开展。考虑到10月后外界气温逐渐降低,因此,10月至次年1月可以作为多年冻土区锥柱基础的最佳施工期。
首先提出了研究冻土区钻孔灌注桩周土体温度状况及回冻过程具有重要实践意义,然后对描述其物理现象的控制方程进行简单说明,最后运用有限元软件对其进行数值模拟,并与昆仑山试验场数据进行对比验证,以期该方法能够用于桩周土体温度状况及回冻过程预测。
针对多年冻土地区输电线路灌注桩基础的桩周温度场热影响问题,传统的研究建立在混凝土绝热升温的假设上,这种假设与实际不符并对计算结果产生影响。为了更好地规划后续工程施工,需要对传统计算进行优化。为了确定水化热放热过程对结果的影响,以实际桩基工程为例,分析了混凝土在绝热升温与带热源升温两种假设前提下温度场的变化规律,并比较了两种假设下土层以及桩身变化规律的区别。结果表明:带热源升温情况下桩底的回冻时间比绝热升温短5 d;同时建议桩基施工时要选择合理的施工工艺,对地基土质尽可能选择含水量低、传热系数高、容积热容小的冻土类型。
以共和至玉树公路的姜路岭公路隧道为依托,开展隧道不同冻土段围岩冻融圈的演化规律及各因素对隧道不同冻土段围岩冻融圈的影响规律研究。结果表明:工况不变,随时间持续,冻融圈深度随之增大;围岩开挖后喷射混凝土支护,延迟1 d施作,则冻融圈深度增大约10 cm。喷射混凝土施作越迟,围岩的的冻融圈深度越大。在隧道运营期间,隧道非冻土段的围岩在外界气温荷载作用下将冻结,且冻结深度随着年份增加而增大,100年后可达26 m。
我国幅员辽阔,桥梁工程涉及到的自然环境和地质条件多样,由此也形成了相关工程建设的不同技术难点。其中冻土区域施工常会导致因类型不同以及季节影响而导致桥梁或建(构)筑物的基础稳定和承载及变形问题。针对这些问题,为保证桥梁结构的稳定性,本文从桥梁桩基础的分类、单桩轴向荷载的传递机理入手,阐述了冻土区桥梁单桩基础地基回冻过程研究的意义,并分析了冻土区桥梁桩基础工程回冻过程对单桩承载力和桥梁施工的影响,提出了相关施工的关键技术和工艺,希望能对冻土区桥梁工程的设计、施工提供一些参考。
基于多年冻土区桩基混凝土的设计与施工,研究了多年冻土区大直径钻孔灌注桩的早期回冻规律,通过桩基现场试验并结合数值仿真模型分析了桩周混凝土水化热和桩周冻土回冻规律。分析结果表明:在灌注完成后25d内桩侧温度在1℃以上,在灌注完成45d后桩侧温度逐渐恢复到0℃;数值模拟结果显示在灌注完成60d后桩身温度下降至0℃,在灌注完成200d后桩周土体回冻至天然状态;入模温度每提高2℃,桩侧峰值温度提高1℃左右,而2倍桩径处峰值温度提高0.5℃左右。可见,在大直径桩基条件下桩基混凝土中可以不添加或少添加早强剂,也没有必要刻意降低拌合物入模温度;桩基的施工时间最好安排在暖季,为混凝土的养生提供较好的外部条件。
为研究高纬度低海拔岛状多年冻土地区桥梁钻孔灌注桩施工后桩基温度的变化规律及回冻时间,利用智能温度监测系统采集了2根15 m长试验桩回冻前后的温度数据,实时监测了桩基的回冻进程,总结出了桩基温度随时间的变化规律并根据有限元分析结果建立了桩基回冻时间的计算方程。监测及分析表明:在冻土地温作用下桩基首先由桩底向上进行单向冻结,当大气温度降到0℃以下时桩基在上下两个方向同时冻结;回冻后桩身内部温度与桩侧土体温度基本保持一致,相同深度处温差均小于0.1℃;在入模温度相近时,1.2 m桩径试验桩的回冻时间是1.0 m桩径试验桩的1.14倍。
为了研究岛状多年冻土地区桥梁桩基回冻后的桩侧摩阻力变化规律,在大兴安岭地区浇筑了1根长15m、直径1.2m的试验桩,并在试验桩所在区域布设了智能温度监测系统,结合采集的温度数据综合判断桩基回冻进程,并指导桩基回冻后的静载试验,测出桩基回冻后桩侧各土层的摩阻力值。试验结果表明:桩基回冻后桩侧各土(岩)层摩阻力的实测值均高于设计值,提高率在13%35%之间。
冻土与普通的土体相比具有独特的工程性质。在冻土地区进行桩基础施工后,桩和周围土体在冻土地温及大气温度的作用下逐渐回冻,回冻过程中在冰的胶结作用下桩与周围土体联结成整体共同承受外荷载作用。为了研究回冻前后桩基的承载力变化及变形性质,在大兴安岭地区浇筑了2根15 m试验桩,试验桩中布设了温度监测系统,采集了桩基回冻过程中的温度数据。根据温度监测结果在桩基回冻前后进行了自平衡静载试验,研究了回冻前后桩基承载力、各土(岩)层的侧摩阻力及桩端阻力。研究结果表明,桩基回冻后冻土地温保持在-1.9℃桩基的承载力是回冻前承载力的1.42倍;端阻力是回冻前的1.49倍为964 k N,占桩基承载力的12.98%;各土(岩)层的侧摩阻力均有所增长,平均增长率为40.3%。研究结果可为类似冻土条件下的桩基设计及施工提供理论依据。