目前,冻土最大动剪切模量随温度变化的规律仍缺乏统一、可靠的表达。文中对低温动三轴、超声波速测试和低温共振柱的试验结果进行文献调研,分类筛查得到21组试验数据,最终获得最大动剪切模量与温度关系的拟合方程。结果显示冻土最大动剪切模量随温度的降低而增加,可用线性方程拟合。
地震荷载作用下高含冰量冻土的动力特性试验研究对西北地区地震多发地段的冻土工程的抗震设计具有重要意义。通过选取兰州的重塑冻土进行动三轴试验,分别研究了地震荷载下不同控制温度(-6,-3,-1℃)、不同含水量(30%,50%,75%)以及不同围压(0.3,0.5,1,2 MPa)下高含冰量冻土的动应力应变关系和动弹性模量。试验结果显示,不同条件下冻土的动应力应变关系呈Hardin-Drnevich双曲线模型,并且不同温度、不同围压和不同含水量对模型参数都有着影响。动弹性模量随温度升高而减小,温度每升高1℃,弹性模量就下降12~15 MPa。围压对动弹性模量的影响有强化作用和弱化作用,-6℃时动弹性模量随围压增大而增大,-1℃时大应变情况下动弹性模量随围压增大而减小。对于高含冰量冻土,动弹性模量随含水量的增大先减小后增大。
本文针对东北地区的季冻区冻土这种特殊工程地质条件下的路基冻害问题,分析了路基冻害的原因和防治路基冻害的工程措施的防治原理,在此基础上提出了一种具体的防治路基冻害的方法——加灰法,并用室内直接剪切试验和动三轴试验验证了加灰法的可行性。
利用MTS-810型振动三轴试验机对不同加载频率、围压和温度下冻结黏土和冻结黄土的阻尼比变化规律进行研究。结果表明:不同频率、围压和温度下,对于冻结黏土,随动应变幅的增大,阻尼比呈先减小再缓慢增大的变化趋势;对于冻结黄土,阻尼比随动应变幅的增加先减小再逐渐保持不变。相同动应变幅下,冻结黏土和冻结黄土的阻尼比随加载频率的增加而减小,随围压的增加变化不大,温度为?0.2?1℃时,阻尼比的变化规律不明显,温度为?2℃时,阻尼比的取值显著小于?0.2?1℃时的阻尼比取值。当动应力水平较低时,阻尼比受频率的影响程度较大;当动应力水平较高时,阻尼比受温度的影响程度较大;在整个加载过程中,阻尼比受围压的影响程度最小。当动应变幅较小时,频率对冻结黄土的影响程度要大于冻结黏土,随动应力水平的增高,冻结黄土受频率的影响程度逐渐小于冻结黏土。在整个加载过程中,温度对冻结黄土的影响程度大于冻结黏土,而围压对冻结黄土的影响程度小于冻结黏土。
通过新型低温动三轴仪的等幅循环荷载试验,以更为符合客观实际的围压、动应力幅值以及固结和冻结方式,研究了冻土冻结期的残余应变规律,包括了温度、荷载作用大小和次数对冻土的残余应变的影响。结果表明:冻土的残余应变随着荷载振动次数的增加不断增长,随着温度的降低不断减少;冻土的残余应变增长模式表现为开始阶段残余应变增长较快,后逐步缓慢增长,当动应力超过临界破坏应力之后,土试样残余应变迅速增长并达到破坏;低温冻土破坏应力较常温较大提高,低温-5℃提高了20%25%,低温-10℃提高了45%50%;冻土大多数荷载情况下处于非破坏状态,在一定次数荷载作用后,不同温度土的残余应变发展近似平行状态,大动应力幅值下的土试样的残余应变对温度更敏感。试验设计克服了以往试验过大固结应力和过大动应力的缺欠,得到的结果应符合客观实际。
基于低温动三轴试验,研究青藏铁路沿线冻结粉质粘土在分级循环荷载作用下的动力学特性及动力学参数的确定,在不同温度、围压和含水率等条件下,并主要针对含水率变化,对冻土的动力学参数动剪切模量随动剪应变幅值的变化规律进行了探讨,得到了一些有价值的结论。
通过低温动三轴试验,采用分级加载方式逐级施加动荷载,对不同加载频率、围压和负温条件下青藏冻结黏土和兰州黄土的动应变幅值变化特征进行了试验研究。结果表明,同一级荷载作用下,动应变幅值随振次的增加基本不变,可以采用平均值来反映各级加载下的动应变幅值;不同加载频率、围压和温度条件下,动应变幅值随动应力幅值的变化规律相同,即随着动应力幅值的增加,动应变幅值逐渐增大;动应变幅值随加载频率的增加而减小,但减小的速率逐渐降低,动应变幅值最终趋于一稳定值,对于青藏黏土和兰州黄土,该稳定值均随加载级数的增加而增加;随着围压的增加,青藏黏土的动应变幅值变化不大,而兰州黄土的动应变幅值呈逐渐减小的趋势;动应变幅值随温度的降低而减小。动应力幅值对动应变幅值的影响最大,动荷载振动频率的影响次之,温度的影响第三,围压的影响最小。
基于黏弹性理论,将动态弹性模量的最大值定义为冻土的动模量,通过计算滞回曲线中直线斜率的方法来计算冻土的动模量。通过动三轴试验,对不同频率、围压和负温条件下冻土的动模量随动应变幅的变化规律进行了试验研究,结果表明:在不同频率(0.1~20 Hz)、围压(0.3~2 MPa)和负温(-0.2~-2℃)条件下,青藏黏土的动模量取值范围为393~1749 MPa,兰州黄土的动模量取值范围为101~713 MPa;同一级加载下,动模量随着振次的增加基本不变,可以采用平均值来表征该级加载下的动模量;对于青藏黏土和兰州黄土,不同频率条件下,动模量随动应变幅的增加最终趋于一稳定值,该稳定值随加载频率的增加而增大;不同温度和围压条件下,随着动应变幅的增加,动模量先减小再趋于一个稳定值,该稳定值随围压的变化较复杂,随温度的降低而增大。
冻土对温度敏感且性质易变,而高含冰量冻土的性质更是极不稳定,针对不同温度、不同围压下50%的高含冰量重塑冻土进行了动三轴试验.结果表明:动强度随着振次的增大线性减小,和温度呈二次变化关系,随着负温的增大而增大,围压对动强度影响不大;残余轴应变随着振次的增大而增大,呈幂函数的关系;随负温的增大而变小,围压对残余应变影响也不大.根据这些影响因素,分别给出了高含冰量冻土的动强度和残余应变的计算公式,这些结果可为该类土的动力特性研究提供参考.
基于低温动三轴试验资料,研究了青藏铁路北麓河粉质黏土在往返长期加荷作用下的变形特征。在不同温度、动应力幅、频率、围压条件下考察冻土轴向残余应变与振次的试验关系曲线,建立了冻土振陷模型,并讨论了模型参数及其影响因素。研究表明,(1)模型参数受拟合所采用的振次水平影响较大,参数B(黏塑流蠕变率)随振次的增加而迅速减小,参数C(蠕变衰减系数)随振次的增加而迅速增大;(2)除迅速破坏的试件外,当振次达到一定临界值以后,B、C两参数都逐渐趋于稳定;相同振次水平下B、C参数均随温度升高、动应力幅值增大、围压增高而增大,随频率的增加而减少,且频率大于6Hz时对参数影响很小。此项研究对于合理预测动力荷载长期作用下由冻土残余变形而产生的沉降量具有重要意义,且为冻土动力学研究积累基础试验成果。