冰川碎屑冰冻体的冰水赋存状态对温度的变化非常敏感。近年受到气候变暖影响,由碎屑冰冻升温融化而引发的冰崩灾害被广泛报道。为了研究温升条件下碎屑冰冻体的抗剪强度劣化行为,提出了正融碎屑冰冻体的有限-离散元数值模型(F-DEM)。模型将碎屑冰冻体概化为冻土、碎石实体单元以及黏聚力单元,将根据试验所得的碎屑冰冻体抗剪强度升温劣化描述为黏聚力单元的黏结强度的升温劣化过程。首先,在冻土内预置使用“牵引-分离”准则的黏聚力单元来代表孔隙冰。然后,在Abaqus软件中使用用户自定义子程序VUSDFLD,通过温度场变量对黏聚力单元的黏结强度劣化规律进行控制。将数值结果与试验进行对比,发现峰值抗剪强度、变形模式、破坏模式等宏观响应特征和强度劣化规律与试验结果吻合较好。对融冰率、碎石率和载荷水平等条件对碎屑冰冻体剪切力学行为的影响进行了研究,结果表明:当融冰率≤2%,剪切破坏模式为粗糙的“锯齿状”;随着融冰率增加(> 2%),剪切破裂面逐渐向较为平滑的“圆弧状”转变。在冻土-碎石界面,由于强度差异较大容易形成应力集中,导致裂缝沿该界面形成渐进式贯通。含石率的增加会导致碎屑冰冻体抗剪强度的降低。随融冰率...
冰川碎屑冰冻体的冰水赋存状态对温度的变化非常敏感。近年受到气候变暖影响,由碎屑冰冻升温融化而引发的冰崩灾害被广泛报道。为了研究温升条件下碎屑冰冻体的抗剪强度劣化行为,提出了正融碎屑冰冻体的有限-离散元数值模型(F-DEM)。模型将碎屑冰冻体概化为冻土、碎石实体单元以及黏聚力单元,将根据试验所得的碎屑冰冻体抗剪强度升温劣化描述为黏聚力单元的黏结强度的升温劣化过程。首先,在冻土内预置使用“牵引-分离”准则的黏聚力单元来代表孔隙冰。然后,在Abaqus软件中使用用户自定义子程序VUSDFLD,通过温度场变量对黏聚力单元的黏结强度劣化规律进行控制。将数值结果与试验进行对比,发现峰值抗剪强度、变形模式、破坏模式等宏观响应特征和强度劣化规律与试验结果吻合较好。对融冰率、碎石率和载荷水平等条件对碎屑冰冻体剪切力学行为的影响进行了研究,结果表明:当融冰率≤2%,剪切破坏模式为粗糙的“锯齿状”;随着融冰率增加(> 2%),剪切破裂面逐渐向较为平滑的“圆弧状”转变。在冻土-碎石界面,由于强度差异较大容易形成应力集中,导致裂缝沿该界面形成渐进式贯通。含石率的增加会导致碎屑冰冻体抗剪强度的降低。随融冰率...
冰川碎屑冰冻体的冰水赋存状态对温度的变化非常敏感。近年受到气候变暖影响,由碎屑冰冻升温融化而引发的冰崩灾害被广泛报道。为了研究温升条件下碎屑冰冻体的抗剪强度劣化行为,提出了正融碎屑冰冻体的有限-离散元数值模型(F-DEM)。模型将碎屑冰冻体概化为冻土、碎石实体单元以及黏聚力单元,将根据试验所得的碎屑冰冻体抗剪强度升温劣化描述为黏聚力单元的黏结强度的升温劣化过程。首先,在冻土内预置使用“牵引-分离”准则的黏聚力单元来代表孔隙冰。然后,在Abaqus软件中使用用户自定义子程序VUSDFLD,通过温度场变量对黏聚力单元的黏结强度劣化规律进行控制。将数值结果与试验进行对比,发现峰值抗剪强度、变形模式、破坏模式等宏观响应特征和强度劣化规律与试验结果吻合较好。对融冰率、碎石率和载荷水平等条件对碎屑冰冻体剪切力学行为的影响进行了研究,结果表明:当融冰率≤2%,剪切破坏模式为粗糙的“锯齿状”;随着融冰率增加(> 2%),剪切破裂面逐渐向较为平滑的“圆弧状”转变。在冻土-碎石界面,由于强度差异较大容易形成应力集中,导致裂缝沿该界面形成渐进式贯通。含石率的增加会导致碎屑冰冻体抗剪强度的降低。随融冰率...
受到气候变暖的影响,青藏高原冰川剪切滑动带中的碎屑冰冻体存在融化风险,这严重影响了冰川的抗剪强度和稳定性。为了研究融化过程对碎屑冰冻体剪切力学特性的影响,引入融冰率定量评估融化程度,对正融碎屑冰冻体试样开展了室内直剪试验。基于试验结果提出了正融碎屑冰冻体的有限-离散元数值模型并进行了对比验证,研究了融冰率和碎石含量对碎屑冰冻体剪切力学行为的影响规律。结果表明:融化过程显著降低了峰值剪切强度、黏聚力和内摩擦角;强度参数与融冰率的关系可用线性准则表达;正碎屑冰冻体剪切强度急剧劣化的主因是孔隙冰融化导致的冻土-孔隙冰界面黏聚力降低;当融冰率从2%增加到4%,试样变形模式由应变软化过渡为应变硬化,破坏模式由粗糙的“锯齿状”过渡为平滑的“圆弧状”;随着碎石含量增加,碎屑冰冻体剪切强度明显降低,降低幅度随融冰率的增加而减小。该研究可作为冰川稳定性评价的有益补充。
受到气候变暖的影响,青藏高原冰川剪切滑动带中的碎屑冰冻体存在融化风险,这严重影响了冰川的抗剪强度和稳定性。为了研究融化过程对碎屑冰冻体剪切力学特性的影响,引入融冰率定量评估融化程度,对正融碎屑冰冻体试样开展了室内直剪试验。基于试验结果提出了正融碎屑冰冻体的有限-离散元数值模型并进行了对比验证,研究了融冰率和碎石含量对碎屑冰冻体剪切力学行为的影响规律。结果表明:融化过程显著降低了峰值剪切强度、黏聚力和内摩擦角;强度参数与融冰率的关系可用线性准则表达;正碎屑冰冻体剪切强度急剧劣化的主因是孔隙冰融化导致的冻土-孔隙冰界面黏聚力降低;当融冰率从2%增加到4%,试样变形模式由应变软化过渡为应变硬化,破坏模式由粗糙的“锯齿状”过渡为平滑的“圆弧状”;随着碎石含量增加,碎屑冰冻体剪切强度明显降低,降低幅度随融冰率的增加而减小。该研究可作为冰川稳定性评价的有益补充。
受到气候变暖的影响,青藏高原冰川剪切滑动带中的碎屑冰冻体存在融化风险,这严重影响了冰川的抗剪强度和稳定性。为了研究融化过程对碎屑冰冻体剪切力学特性的影响,引入融冰率定量评估融化程度,对正融碎屑冰冻体试样开展了室内直剪试验。基于试验结果提出了正融碎屑冰冻体的有限-离散元数值模型并进行了对比验证,研究了融冰率和碎石含量对碎屑冰冻体剪切力学行为的影响规律。结果表明:融化过程显著降低了峰值剪切强度、黏聚力和内摩擦角;强度参数与融冰率的关系可用线性准则表达;正碎屑冰冻体剪切强度急剧劣化的主因是孔隙冰融化导致的冻土-孔隙冰界面黏聚力降低;当融冰率从2%增加到4%,试样变形模式由应变软化过渡为应变硬化,破坏模式由粗糙的“锯齿状”过渡为平滑的“圆弧状”;随着碎石含量增加,碎屑冰冻体剪切强度明显降低,降低幅度随融冰率的增加而减小。该研究可作为冰川稳定性评价的有益补充。
以黄河什四份子弯道为研究对象,基于2019-2020年度的凌情监测影像及现场试验数据,分析了河流弯道冰水动力学行为特征。结果表明:上宽下窄的河道形态是造成弯道卡冰的主要原因,流凌-封河阶段,弯顶节点工程对水流的顶托作用促进了上游回流区的形成;受弯道离心力作用,河冰聚集于河道凹岸一侧,并在回流区堆积形成冰桥,从而缩小了断面过冰面积,河道逐渐封冻;弯顶下游流速大且来冰量少,形成清沟,主流向河中发展;冰塞堆积于弯顶上游凹岸主河槽内,水流被挤压至凸岸非冰塞区,弯道主流易位;在稳封期,河道冰水动力特征基本不再变化,在解冻开河期,凸岸非冰塞区流速较大,主流区冰盖优先解冻且沿主流输移,回流区冰盖最后消融,河道主流逐渐恢复至畅流阶段,整体呈复归式。
以黄河什四份子弯道为研究对象,基于2019-2020年度的凌情监测影像及现场试验数据,分析了河流弯道冰水动力学行为特征。结果表明:上宽下窄的河道形态是造成弯道卡冰的主要原因,流凌-封河阶段,弯顶节点工程对水流的顶托作用促进了上游回流区的形成;受弯道离心力作用,河冰聚集于河道凹岸一侧,并在回流区堆积形成冰桥,从而缩小了断面过冰面积,河道逐渐封冻;弯顶下游流速大且来冰量少,形成清沟,主流向河中发展;冰塞堆积于弯顶上游凹岸主河槽内,水流被挤压至凸岸非冰塞区,弯道主流易位;在稳封期,河道冰水动力特征基本不再变化,在解冻开河期,凸岸非冰塞区流速较大,主流区冰盖优先解冻且沿主流输移,回流区冰盖最后消融,河道主流逐渐恢复至畅流阶段,整体呈复归式。
以黄河什四份子弯道为研究对象,基于2019-2020年度的凌情监测影像及现场试验数据,分析了河流弯道冰水动力学行为特征。结果表明:上宽下窄的河道形态是造成弯道卡冰的主要原因,流凌-封河阶段,弯顶节点工程对水流的顶托作用促进了上游回流区的形成;受弯道离心力作用,河冰聚集于河道凹岸一侧,并在回流区堆积形成冰桥,从而缩小了断面过冰面积,河道逐渐封冻;弯顶下游流速大且来冰量少,形成清沟,主流向河中发展;冰塞堆积于弯顶上游凹岸主河槽内,水流被挤压至凸岸非冰塞区,弯道主流易位;在稳封期,河道冰水动力特征基本不再变化,在解冻开河期,凸岸非冰塞区流速较大,主流区冰盖优先解冻且沿主流输移,回流区冰盖最后消融,河道主流逐渐恢复至畅流阶段,整体呈复归式。
各种类型的埋地管道在设计时,常常忽略管道在作业过程中因受热胀冷缩和腐蚀作用时的受力变化情况。随着管道使用时间的延长,管道由于冻涨及腐蚀介质影响而不可避免的发生破损现象,特别是当埋地管道处于冻土区时,冻涨融沉现象对管道的破坏作用更加明显。因此结合冻土区埋地管道受力变形破环因素,基于有限元模型来分析冻土区埋地腐蚀管道的力学行为,进而全面了解不同的环境温度、腐蚀深度和长度等对管道应力产生怎样的影响,从而为制定管道腐蚀防控预案提供依据。