探究大兴安岭多年冻土区3种林型秋季冻融期土壤活性碳变化特征及其主要影响因素,为多年冻土区森林土壤碳汇管理提供帮助。以兴安落叶松林(LY)、樟子松林(ZZ)和白桦林(BH)为研究对象,于2022年10月10日至11月18日对不同土层(0~5、5~10、10~20 cm)土壤进行取样,测定其土壤活性碳组分(可溶性有机碳、微生物量碳、易氧化有机碳)质量分数,探究其动态特征及其影响因子。结果显示,10月10日至11月18日兴安落叶松林、白桦林和樟子松林土壤温度均随气温下降而降低,变化范围分别为-0.49~3.71、-2.10~2.39、-1.04~3.48℃。3种林型不同土层土壤可溶性有机碳(DOC)质量分数随着温度的降低呈先升高后降低的变化趋势,微生物量碳(MBC)质量分数先减少后增加,易氧化有机碳(ROC)质量分数则波动式变化,变化范围分别为78.75~214.32、101.06~988.40、1.52~13.94 g/kg,其中,白桦林土壤DOC和ROC质量分数显著高于兴安落叶松林和樟子松林,而土壤MBC质量分数在兴安落叶松林中最高。3种活性碳在不同林型内均呈“表聚效应”,且冻融期内土壤...
[目的]季节冻土退化会直接影响生长季初期的水分补给,进而影响区域森林健康。然而,目前大兴安岭南段的冻土退化,特别是气候变化下冻土如何退化尚不清楚。[方法]在内蒙古赛罕乌拉国家级自然保护区长期实验森林中,定位观测2014—2022年气温、土壤温度、土壤体积含水量等环境因子,分析森林季节冻土退化特征。[结果]研究表明:大兴安岭南段气温加速上升,1997—2022年间年平均气温上升速率为0.42℃·(10 a)-1,比1973—1996年间的升温速率[0.34℃·(10 a)-1]加快了23.5%;且冻融期(当年11月—次年6月)平均气温上升速率更快[0.46℃·(10 a)-1]。土壤的冻融模式呈自上而下单向冻结,单向融化;冻结速率、融化速率随着土壤深度的增加而变快,在40~80 cm土层达到最大值(冻结速率2.23 cm·d-1、融化速率4.50 cm·d-1)。季节冻土持续退化,观测到的最大冻结深度由80 cm减少至40 cm;冻融期显著缩短,开始冻结时间推迟,完全融化时间提前...
溶解性有机碳(DOC)的输移过程是流域碳循环中重要的组成部分,对全球碳循环产生重要影响。以大兴安岭多年冻土区的典型森林小流域—老爷岭流域为研究对象,获得2021年4月9日到6月30日冻融期降雨量、气温、土温等气象数据及逐日径流量、径流DOC浓度,计算了冻融循环期(4月9日—28日)和融化期(4月29日—6月30日)流域径流DOC的输出通量,揭示了径流DOC浓度及输出通量的影响因素。结果表明:(1)研究时段内,老爷岭流域径流DOC浓度变化范围为3.88—33.75 mg/L,流域上游的径流DOC浓度变化趋势与下游基本一致,DOC浓度随着温度的升高呈现下降趋势,4月份平均径流DOC浓度明显高于5、6月份。(2)研究时段内流域径流DOC总输出通量为3215.48 kg/km2,其中5月径流DOC输出通量高于4、6月份。径流量与径流DOC输出通量存在显著正相关关系(P<0.05),是流域DOC输出通量的主导因素。(3)研究时段内流域DOC浓度与平均气温呈极显著负相关(R2=0.5048,P<0.001);降水样品中的DOC浓度变化范围为1...
以南疆季节性冻土地区为研究背景,设置冻融期自然裸地土壤和温棚土壤2种处理,对比分析2个处理下土壤水热的监测数据。结果表明,温棚能减少热量散失,季节性影响不明显,土壤水热空间分布变化小,表层土受蒸发作用和土壤入渗影响,水热较低。自然裸地中土壤水热迁移规律受冻融条件(土壤冻结状态、气温等)影响较大,土壤水热存在影响与制约关系。冻结前浅层水热较小,随土深递增且变幅明显,深层土对太阳辐射影响明显滞后,水热波动小易保持温度且相对较高。冻结期水热均值为最低值,土壤水分高值区整体向下移动约15 cm,冻土层水分蒸发小,可积蓄水量,土壤冻结锋面随地表负温的降低向下迁移,同时水分带动下层土壤盐分向冻结层迁移。消融期土壤温度随土深减小,土壤表层水分下渗同时受蒸发作用大量散失,含水率仅为8.2%,水分高值区集中于30~70 cm且为冻融期最大。土壤含水率的增加抑制了土壤温度的提升,土壤冻结速率慢,时间长,融化速率快,融化时间短。
研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放,对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义.利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测,结合气象和土壤环境因子进行了分析.结果表明:整个观测期高寒草甸土壤表现为CO2的源,土壤CO2通量的日变化范围为2.52~532.81 mg·m-2·h-1.土壤CO2年排放总量为1 429.88 g·m-2,年均通量为163.23 mg·m-2·h-1;其中,CO2通量与空气温度和相对湿度、活动层表层2 cm、10 cm、20 cm、30 cm土壤温度、含水量和盐分均显著相关.2 cm土壤温度、空气温度和总辐射、空气温度、2 cm土壤盐分分别是影响活动层表层2 cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子.在完全融化期、冻结过程期和整个观测期,拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%,对应的Q10值分别为1.93、6.62和2.09.冻融期(...
以唐古拉监测点气象及活动层土壤水热资料为基础,对青藏高原高海拔多年冻土区冻融期活动层土壤的水热特征进行了分析。研究结果表明:不同土层的土壤温度变化规律基本一致,土壤温度的变化滞后于气温的变化,而且滞后时间随着土层深度的增大而增大,表层土壤温度变化波动较大,随着深度的增加,土温温度变化趋于平缓;气温的降低引起了土壤温度的降低,从而引起水分的迁移;在冻结期,水分向上下两个冻结锋面迁移,而活动层中部则被疏干,在融化期,活动层底部水分含量高,水分向相变界面附近迁移。拟合了冻结期未冻水含量与土壤温度的关系,相关系数R2平均值为0.89,结果基本能反映实际情况。该研究结果为高海拔多年冻土区冻融土壤水热耦合模拟的研究提供了基础理论依据。
在我国北方大部分地区滑坡灾害的发生有两个高峰期,即雨季和冻融期,而目前对冻融期滑坡的研究尚处在起步阶段,导致对冻融期滑坡的防治效果远不及雨季滑坡。本文以甘肃黄土滑坡为研究对象,探索季节冻土区冻融期黄土滑坡的基本特征和形成机制。结果表明,季节性冻融作用是季节冻融期黄土滑坡滑坡发生的主要因素,其不但在斜坡表层产生强烈作用,而且可引起斜坡深处地下水富集、土体软化范围扩大和静、动水压力增大等冻结滞水效应,促使斜坡整体性大规模变形破坏,导致滑坡发生。