共检索到 34

提高季节性冻土区高铁路基冻深预测精度,对保证寒区高速铁路的安全调度和平稳运行具有重要意义。针对现有季冻区高铁路基冻深预测模型缺乏利用多元环境序列信息的问题,提出一种顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型,以兰新高铁山丹马场-民乐路段DK371+900、DK383+345和DK391+940三处断面为例,对2015-2017年冻深快速增长期的路基冻深进行预测。该模型首先利用EMD算法对导热系数与冻土环境变量时序数据进行信号分解,得到一系列具有不同特征尺度的数据序列,体现出原数据的趋势与波动性,增加数据的细节和多样性;再利用KPCA算法提取出影响路基冻深的关键因子,实现数据降维,消除因EMD产生的数据冗余;最后通过LSTM网络实现基于多变量的路基冻深预测。实验表明:该模型较传统路基冻深预测模型、EMD-LSTM模型、多变量BP神经网络模型、多变量LSTM模型有更高的精确度。模型在三处断面路基冻深预测的平均绝对误差(fmae)为0.029m、0.033m和0.060m;均方根误差(frmse)为0.036m、0.042m和0.07...

期刊论文 2025-02-28 DOI: 10.19713/j.cnki.43-1423/u.T20241709

受气候变暖影响,东北北部地区冻融灾害频发,对寒区工程设施造成了重要影响。地基温度场的研究是分析与解决工程基础冻融灾害的重要手段。文中我们以漠河机场跑道为对象,通过有限单元法研究了洁净砾石换填对机场道基温度场的影响,并对运行30年内道基温度场进行预测。结果表明,换填使季节最大冻结深度(MSF)增加,且换填对道基下MSF的水平影响范围在道面中心线两侧30 m左右。之后,通过比较不同换填深度(1.5(顶)~3.5(底)、1.5~4.5、1.5~5.5和1.5~6.5 m)的道基温度场变化,发现:换填底部深度达到4.5 m时,MSF变化的速率开始减小。最后,根据IPCC第六次评估报告(AR6)未来100年间不同气候变暖速率模型模拟研究了无换填与不同换填深度下的MSF可能变化。结果发现,到2100年,在SSP2-4.5情景下,未换填及不同换填深度的道基下MSF分别为1.63、1.86、1.84、1.84和1.84 m。因此,利用换填法来减少跑道冻融灾害时换填深度应至少达到4.5 m。同时,应加强漠河机场道基地表水与该跑道区地下水的防排水设施建设与维运。研究结果有助于进一步认识换填对多年冻土和活动...

期刊论文 2024-04-29

路基冻胀是冻土地区铁路运营的顽疾,在防排水、土质改良和保温等措施难以消除冻胀的情况下,人工供热是一种备选方案。依托准池铁路K44+970—K45+020冻害路段,设计基于地源热泵的分布式供热方案,建设1个长度为20 m的现场试验段。在2021—2022年冬季开展1个冻融周期的供热试验,基于监测数据对热泵换热温度、路基温度场、冻结深度、轨道变形量等指标进行分析。研究结果表明:热泵的供热温度可达50℃以上,热源品位高且供热量稳定。供热试验段内路基冻结范围和温度极值比天然工况显著减小,线路中心处最大冻结深度由148 cm减小为88 cm,冻结锋面保持在地下水毛细迁移高度以上。试验段路基横向冻结深度差值由天然条件的49 cm减小为13 cm,有利于消除横向冻胀差异引起的水平不平顺。试验段纵向上的冻结深度差值基本控制在20 cm以内,可以避免次生高低不平顺。天然路基呈先发育深层冻胀、后在降雪融水入渗时发育浅层冻胀的规律,最大冻胀量达9.4 mm。试验段内路基未发育深层冻胀,且浅层冻胀量得到有效控制,轨道变形量控制在±3 mm以内,没有超出作业验收管理值,有效缓解了试验段冻害问题。

期刊论文 2023-12-16

青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...

期刊论文 2023-10-07

最大冻结深度是季节冻土的重要指标,预测第三极地区未来最大冻结深度的变化,对于理解该区域的环境变化,指导生态保护、农牧业生产、工程建设等都具有重要意义。本研究利用基准时期(2000s)良好训练的支持向量回归模型,使用集合模拟策略,预测了2050s和2090s第三极地区在4种SSP情景下最大冻结深度的变化。结果表明,在可持续路径(SSP126)、中间路径(SSP245)、区域竞争路径(SSP370)和化石燃料为主发展路径(SSP585)情景下,不包括多年冻土退化为季节冻土的区域,相对于基准期,季节冻土的最大冻结深度到21世纪末将分别减小10.41 cm(11.69%)、24.00 cm(26.95%)、37.71 cm(42.34%)和47.71 cm(53.57%)。最大冻结深度的减小具有海拔依赖性,随着海拔的升高,最大冻结深度减小的速率变大,但是海拔超过5 000 m后,最大冻结深度减小速率逐渐减小,这与升温的海拔依赖性较为一致。最大冻结深度的变化也与生物群区有关,在4种SSP情景下,山地草地和灌木区的最大冻结深度减小速率最快,到21世纪末平均每十年分别减小1.80 cm、3.77 c...

期刊论文 2023-07-29

近年来,在全球气候变暖的背景下,中国季节冻土最大冻结深度总体呈现减小的趋势。相比于传统的钻孔勘探的方法,卫星遥感技术可以更准确、方便、全面地估算河北省季节性冻土分布及最大冻结深度。利用2002—2022年的遥感地表温度数据,以及1970—2021年的气温数据,采用Stefan公式模拟了河北省季节性冻土最大冻结深度分布及变化规律,并分析了河北省季节性冻土最大冻结深度时空分布特征及其与平均气温的相关性。河北省季节性冻土最大冻结深度总体随海拔高程的降低呈由西北向东南递减的趋势;近50年来,随着气温的升高,河北省季节性冻土最大冻结深度总体呈现减小趋势,平均变化率为-3.60 cm/10 a;季节性冻土的最大冻结深度与平均气温的关系整体呈负相关,中南部及中北部地区的相关性较好,大部分地区的相关系数的绝对值达到了0.55以上;利用卫星遥感数据反演的最大冻结深度可为揭示河北省季节性冻土对气候变化的响应提供参考依据。

期刊论文 2023-07-27 DOI: 10.19671/j.1673-4637.2023.03.015

季节性冻土区高速铁路采用混凝土基床控制路基冻胀变形,已取得了良好效果,但在季节性冻土区气候环境下还存在翘曲变形问题。结合工程实例,以混凝土基床路基为研究对象,开展混凝土基床变形控制试验研。结果表明:聚氨酯板具有减小混凝土基床冻结深度,抑制冻胀量的作用,其厚度越大防冻胀效果越好,但增加气凝胶保温毡厚度,不能明显减小混凝土基床的冻结深度和缩短冻结周期。

期刊论文 2022-12-28 DOI: 10.13379/j.issn.1003-8825.202203029

为研究大兴安岭洛古河地区的冻土发育过程,利用原位监测测得的大兴安岭洛古河地区的2018~2019年的地温数据,进行筛选、处理并绘制冻土发育过程线,分析结果表明,根据监测点3条地温链数据绘制的3条冻土发育过程线趋于一致,表明测得的数据可靠;监测点测得的最大冻结深度为287.63cm;根据冻土发育过程特征,可将发育过程分为不稳定封冻期、稳定封冻期、不稳定融冻期、稳定融冻期和无冻期。通过分析了解了冻土的发育特点,可对寒区工程施工及构筑物的稳定运行采取针对性的预防措施。

期刊论文 2021-09-23 DOI: 10.13905/j.cnki.dwjz.2021.08.028

利用黄河源区9个气象站1997—2018年的逐日气温、地表温度和冻土深度资料,使用线性趋势分析法,基于ArcGIS的反距离权重插值法、高程插值法和相关系数法,对黄河源区温度和季节性冻土最大冻结深度以及封冻期起止时间进行分析,研究最大冻结深度与温度的相关关系。结果表明:黄河源区季节性冻土的最大冻结深度分布具有较明显的纬度分带性和垂直分布性,纬度较高地区大于纬度较低地区,海拔较高地区大于海拔较低地区。同时纬度高海拔高的地区相较于纬度低海拔低的地区来说,冻土冻结起始日出现的更早,解冻日出现的更晚,封冻期更长;黄河源区季节性冻土的冻结起止时间均发生了变化,大致表现为冻结起始时间延后,冻结消融时间提前,封冻期缩短,不同地区变化幅度有所不同,源区平均缩短速率为8 d/(10 a)。近20年来,源区绝大部分地区气温、地温和负积温均呈现不同程度的上升趋势,冻土最大冻结深度呈波动减小的趋势,最大冻土深度和冬季平均气温地温、周期内平均气温地温、负积温均呈负相关关系,其对负积温的响应最为显著,相关系数R=-0.762 7。这说明负积温每上升100℃,最大冻土深度将减少7.07 cm。

期刊论文 2021-06-30 DOI: 10.13476/j.cnki.nsbdqk.2021.0088

合理确定冻结深度是季节性冻土区防冻设计的关键,为研究季节性冻土区黏土的冻结深度,统计了中国部分季节性冻土地区气温,获得了这些地区的气温特征,以此确定了室内试验的温度边界条件,开展了10%、20%、30%3种不同质量含水量的单向冻融循环试验。研究结果表明,10%、20%、30%3个试样的最大冻结深度分别为28、15、12 cm;鲁基扬诺夫公式预测值较Stephan公式、《建筑地基基础设计规范》公式、《冻土地区建筑地基基础设计规范》与《冻土工程地质勘察规范》公式的预测值更准确;利用未冻水体积含水率修正了《冻土地区建筑地基基础设计规范》的冻结深度计算值,其误差在6%之内,因而建议在季节性冻土区的黏土地区用该修正公式计算设计冻结深度。

期刊论文 2021-06-08
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共34条,4页