通过一系列高温冻土-现浇混凝土接触面的负温直剪试验,分析接触面剪切力学特性和受力变形机理,采用二元介质模型对接触面受力变形机理进行力学抽象,引入破损率和应力分担率函数,假设接触面各微元强度服从Weibull概率分布,建立高温冻土-现浇混凝土接触面的本构方程。研究结果表明:接触面剪切变形破坏发生在富含冰膜的界面冻土上,接触面应力-位移曲线表现为应变软化型,可将其划分为4个阶段。在各接触面影响因素中,温度对接触面冻结强度影响最显著,二者呈指数函数关系,法向应力和含水率与冻结强度呈线性关系。基于二元介质理论建立的力学模型和本构关系科学地揭示了接触面微观受力变形机理,较好地描述接触面应力-位移曲线全过程及应变软化现象,可为高温冻土地基中结构承载力的数值模拟和安全评价提供理论依据。
在高寒区水利工程中,冻土与混凝土接触界面的力学特性对于衬砌的稳定性和长期服役性能有着重要的影响。为研究冻土-混凝土界面冻结强度特征与形成机理,开展了试验温度为-1~-5℃,初始含水率为9.2%~20.8%,法向压力为50~300 kPa条件下冻结黄土-混凝土界面直剪试验。通过研究界面剪切应力-位移曲线特征,结合摩尔库伦强度理论,将峰值强度分解为残余强度和界面冰胶结强度,对冻土-混凝土界面冻结强度形成机制进行解释。相应将界面黏聚力分解为峰值强度黏聚力和残余强度黏聚力,界面摩擦系数分解为峰值强度摩擦系数和残余强度摩擦系数。结果表明:界面冰胶结强度随着试验温度下降而增大,但受法向压力影响很小。在初始含水率为13.1%,法向压力100 kPa时,试验温度由-1下降至-5℃,冰胶结强度由4.4增加至111.1 kPa。界面残余强度随着法向压力增大而增加,但受试验温度影响很小。在含水率20.8%,试验温度-5℃时,法向压力由50增加至300 kPa,残余强度由34增加至177 kPa。界面峰值强度黏聚力随温度的降低呈指数增长,在含水率13.1%时,温度由-1下降至-5℃,峰值强度黏聚力由35.09...