由于全球气候变化,以及大规模的寒区工程建设,打破了多年冻土地区原有的地表能量平衡,导致地温升高,冻土上限逐年下降,高温冻土层厚度不断扩大,冻土蠕变变形愈加剧烈。本文通过结合青藏铁路典型多年冻土块石路基路段特征,采用变换等效导热系数法来综合考虑块石通风区的换热性质,数值模拟多年冻土路基多年蠕变变形,进行其10年、20年和30年的温度场和变形场预测,分析其蠕变情况。
作为冻土的一个重要力学参数,塑性屈服应力受诸多因素制约,如冻土温度、含水率和受力状态等。为探究蠕变对冻土塑性屈服应力的影响,引入融土的一维蠕变模型量化研究冻土蠕变对其塑性屈服应力的影响,以青藏铁路沿线具有代表性的黏土作为研究对象,进行了不同时长的蠕变试验和K0逐级加载试验。试验结果表明,针对融土提出的一维蠕变模型在描述冻土蠕变-卸载-加载过程中有很好的适用性。通过试验对比分析和计算结果得知,塑性屈服应力是初始塑性屈服应力、压缩系数和回弹系数的函数,且其对数与蠕变应变(时间)呈线性关系,这一量化关系能够较好地描述冻土塑性屈服应力与蠕变应变(时间)的发展规律。
准确掌握人工冻土的蠕变特性对控制冻结法施工的安全具有重要意义。目前常用的冻土蠕变本构模型是经验模型和整数阶元件模型,模型中的参数大多缺乏明确的物理意义或者参数繁多。以伯格斯蠕变模型为基础,建立了参数简单且物理意义明确的人工冻土分数阶导数蠕变方程,并给出了模拟退火算法优化模型参数的过程。基于室内蠕变试验结果,分析了温度、加载应力和土质对人工冻土单轴蠕变特性的影响。并将试验结果与本次建立的蠕变模型计算结果进行比较发现,两者吻合良好。研究成果对目前国内外煤矿立井表土层施工中冻土爆破方面的研究、冻结管参数的选取、冻结壁壁厚及冻结温度的设计具有重要的基础作用。
受力历史是影响冻土力学行为的关键因素。引入融土中考虑应力历史的一维蠕变模型并进行了相应修正,使其能够反应温度对冻土蠕变特性的影响,通过不同温度条件下的K0加载试验获取相关模型参数,经过回归分析得到了各参数与温度的函数关系。通过对比试验和模型计算结果表明,修正后得到的冻土一维蠕变模型在预测不同温度条件下土体的蠕变发展规律时具有较好的预测精度。同时,随着施加压力的增大,该模型能够准确描述当外压力超过其历史上所受最大压力时所产生的应变急剧增长现象。因此,该模型可以作为寒区工程稳定性分析和设计的可靠依据。
结合青藏铁路多年冻土区钻孔灌注抗拔桩现场载荷试验,依据场地多年冻土地温实测资料、物理力学参数以及冻土类型,考虑多年冻土蠕变特性,对冻土区钻孔灌注抗拔桩进行非线性有限元分析。桩–土体系有限元分析采用三维十节点四面体等参单元,桩–土相互作用采用面–面接触单元;同时,假定桩–土体系本构模型服从Drucker-Prager屈服准则。通过数值模拟计算结果与抗拔桩现场载荷试验的对比分析,结果表明,考虑冻土蠕变的分析结果与试验值较为接近,不考虑冻土蠕变时,当外载荷较大时桩顶上拔位移的计算值要比试验值小43%左右,但外载荷较小时两种计算结果差别不大。因此,考虑冻土蠕变的分析方法更比较符合多年冻土区钻孔灌注抗拔桩的实际受荷特点。
随着寒区工农业的发展以及冻结施工技术在工程上的推广应用 ,对冻土强度及蠕变的深入研究越来越显示出它的重要性 .依据连续介质力学和热力学原理 ,建立了冻土粘弹塑损伤耦合本构理论 .在理论分析及试验验证的基础上 ,提出损伤演变律及损伤门槛值的具体形式 ,同时分析了围压对冻土的强化及弱化机理 ,建立了与球应力相关的未冻水含量状态方程以及粘塑性耗散势函数 .与三轴恒应力蠕变试验结果对比 ,该理论模型是适应的
给出冻土蠕变实验的相似条件。认为在一定条件下冻土蠕变符合Boltzmann叠加原理,可以用光粘弹性方法进行模拟实验。作为实例,进行了刚性压块及桩式基础作用下的冻土蠕变平面问题光粘弹性模拟实验,首次得到了这方面的冻土预报的成果。
从线性粘弹性理论出发,在满足Boltzmann叠加原理的情况下,给出了模型实验应满足的一般相似条件,进一步讨论了冻土蠕变模拟实验的相似条件。确定了冻土及光粘弹性模型的蠕变参数。在此基础上对有圆孔的冻土蠕变进行了光粘弹性模拟实验,得到了孔边应力随时间变化的结果