在寒区工程施工中,冻土不可避免地会承受压-剪耦合荷载的作用。为了研究冻土在压-剪耦合冲击加载下的力学性能及其能量演化规律,设计了4种不同倾角(0°、3°、5°和7°)的冻土试样,并利用分离式霍普金森压杆在3组不同冻结温度(-23、-15、-7℃)下对其进行冲击实验。结果表明:压-剪耦合冲击加载下冻土的破坏过程可以分为弹性阶段、塑性阶段和破坏阶段;随着温度由-23℃升至-7℃,0°倾角下冻土的抗压强度下降了41.4%,表现出明显的温度敏感性,而当倾角由0°增加至7°时,-23℃下冻土的抗压强度降低了21.0%,表现出一定的加载路径依赖性;冻土的破坏面随着温度降低不断向外扩展;冻土的破坏过程伴随着能量积累、耗散和释放,且能量耗散密度随着温度的升高和倾角的增加而降低。
为研究冻融作用下含不同冲击损伤砂岩的动力学特性,对完整及不同初始损伤的泥质粉砂岩进行冻融后开展冲击加载试验,研究冻融作用对含初始损伤泥质粉砂岩的宏观动力学性能和损伤演化规律。结果表明:含初始损伤砂岩的纵波波速、弹性模量与冻融周期呈负相关;含Ⅰ、Ⅱ、Ⅲ、Ⅳ级初始损伤砂岩的纵波波速随冻融周期的增大分别下降了8.1%、11.9%、11.2%、16.8%,初始损伤等级越高的砂岩在冻融作用下纵波波速下降幅度越明显;冻融损伤和初始损伤耦合作用下砂岩弹性模量的变化速率逐渐增加,抵抗形变的能力逐渐下降,塑性逐渐增大;在冻融作用下含初始损伤砂岩的动态抗压强度与应变率呈指数衰减;初始损伤的存在加剧了冻融损伤对岩石的劣化作用,加快了砂岩自身宏观动力学性能的弱化速率。
为了直观地描述冻土在冲击加载下的动态力学性能和应力-应变关系,从细观出发,将冻土视为冰颗粒增强的复合材料,建立了基于冰颗粒增强的冻土细观动态本构模型。根据土相在冲击作用下层层破坏的特点,假定冲击层的动模量因冲击损伤而发生变化,在模型中引入了应变率项。利用分离式霍普金森压杆(SHPB)对冻土进行冲击加载实验,通过改变温度和应变率,获得了冻土在不同实验条件下的动态冲击应力-应变曲线。实验结果表明,冻土具有明显的温度效应和应变率效应。模型计算结果与实验结果符合良好,验证了所建立的动态本构模型的合理性和适用性,具有很强的工程应用价值。
通过对冻、融土强度性能的对比分析,发现冻土强度远大于融土,导致冻土开挖困难,是困扰寒区工程作业的一项技术难题.作者首先介绍了几种开挖冻土的方法,并对不同开挖法的实用性和可行性做了阐述,指出机械法开挖破碎冻土是十分重要和有效的措施.冻土开挖破碎的难易程度取决于冻土动力学性质及其与开挖机械的作用关系,本文对冻土动力学方面的研究做了简要概述,旨在指出影响冻土动力学性质的主要因素及其破坏损伤特征,为冻土开挖方式优化、改进开挖机械性能提供参考.最后结合以往的冻土切削和冲击试验,对进一步开展冻土开挖和开挖机械优化研究提出了几点建议,希望对改良寒区工程施工技术、提高作业效率起到指引作用.
为了更好地描述冻土在冲击加载下的动态力学性能及其应力应变关系,将冻土看成是胡克弹簧和Maxwell体的并联组合体,并且引入符合双参数的Weibull分布损伤和Johnson-Cook模型的温度项对所研究的线性黏弹性模型进行了改进。利用分离式霍普金森杆(SHPB)对冻土进行了冲击加载实验,获得了冻土分别在不同温度、相同高应变率以及相同温度、不同高应变率冲击加载下的应力应变曲线,实验表明冻土具有明显的温度效应和应变率效应。对比实验曲线和理论曲线可以看出模型计算结果和实验结果具有很强的一致性,拟合良好,具有较高的工程应用价值。
研究通过系统的霍普金森压杆实验,分析了冻土冲击动态应力-应变曲线的特征,验证了冻土的应变汇聚现象,揭示了产生这一现象的原因。研究发现应变率、实验冻结温度和初始含水量等参数对应力-应变曲线均有影响,而应变汇聚现象产生的首要条件是具有相同的加载应变率,与温度和初始含水量等参数无关。同时,冻土的动态裂纹损伤类型和裂纹损伤演化方式能够直接影响汇聚现象中应力-应变曲线的形状,温度损伤现象是冻土特有的动态力学性能和应变汇聚现象产生的重要原因。此外,霍普金森压杆实验特殊的冲击动态加载方式和实验基本假设产生了特定的加载历程,实验加载条件决定了应变汇聚现象的汇聚点位置。因此,应变汇聚现象反映了冲击动态加载条件下冻土特有的力学性能,是冻土固有性质和实验手段共同作用的结果。
研究冻土在冲击加载下的动态力学行为对寒区的工程建设、交通运输等都有着重大的意义。该研究在粘弹性模型的基础上,考虑了损伤和温度的影响,建立了能够合理描述冻土在单轴冲击荷载作用下的应力-应变行为的本构模型。并进行了冻土霍普金森压杆冲击动态实验,对比实验曲线和所建立的本构模型曲线,发现拟合良好,具有一定的工程应用价值。
课题以河套灌区实际地理气候环境为基础,研究胶粉对天然浮石混凝土抗冻性的改善机理,以及针对寒区特殊地理气候环境下的适应能力。利用内蒙古地区富集的浮石资源,通过废旧轮胎橡胶粉改性浮石混凝土的抗冻、抗渗、抗冲击耐磨等性能。通过室内外实验分析及微观界面的定量化表达,得出天然浮石轻骨料胶粉混凝土微观界面性能,孔隙特征与宏观力学性能(抗折、抗压、抗拉、抗渗、抗冻和抗耐磨性)之间的内在联系,总结胶粉混凝土细观变化与宏观力学性能的耦合规律;通过天生河口闸观测实验数据,建立相应温度梯度下冰凌-闸体冲击模型;通过三温冻融循环试验机对仿真冻结,研究冻结及冰水冲击前后的水泥水化产物结构形态、界面过渡区,得出水泥基材料的内部成分变化、胶粉-水泥浆体-骨料界面过渡区几何物理特性表征及孔结构的变化规律。
2014-01采用分离式霍普金森压杆(SHPB),对于-17℃冻土进行了应变率约350、600、800、1 000和1 200 s-1的单轴冲击实验。获得了其相应应变率下的应力应变关系。发现其没有明显的屈服现象,具有显著的应变率效应,其峰值应力与最终应变均随加载应变率增大而增大,并且具有一定的线性关系。引入含损伤的Johnson-Cook模型,描述-17℃冻土的应力应变关系,发现在600~1 200 s-1的加载应变率范围内,该模型具有较好的适用性。
中国正在开展月球探测活动,下一步将发射月球着陆器并实现月面软着陆。为确保着陆器在月面着陆时的稳定性和可靠性,发射前需在地球表面进行着陆冲击试验。对会影响月球着陆器着陆性能的月貌和月壤进行了详细的叙述,以便在试验过程中进行相应环境特征的模拟。用图表详尽阐述了三种月球重力场模拟器的原理和装置,并对各自的优缺点进行了评述。根据试验模型的不同,将月球着陆器着陆冲击试验分为原尺寸试验(模拟的月球重力场下)和1/6模型试验(地球重力场下)两类,分别介绍了两类模型的结构以及试验模型与着陆器原型机之间缩放关系。分别给出了原尺寸试验和1/6模型试验的试验平台和试验步骤,以及初始试验参数的给定方法。根据试验研究的需要以及月球探测器在月球表面着陆时的真实情况,给出了在地球上进行着陆模式模拟的方法。研究表明两种试验结果之间有良好的一致性,但是这两种试验的花费很高,且对试验场地有较高的要求。再者,由于在试验中对月壤没有太好的模拟方法,试验数据与真实着陆时数据存在一定差异。