新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km2,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
青藏高原超常的气候变暖引起亚洲水塔失衡。亚洲水塔失衡伴随着冰川普遍退缩、冰崩以及冰湖溃决等冰冻圈灾害频发,进而冲毁公路、桥梁和村庄,对下游居民生命财产安全和社会经济发展造成严重影响。在第二次青藏高原综合科学考察中,通过实地考察、遥感监测和台站观测等手段,对亚洲水塔冰湖和冰湖溃决进行了广泛深入的研究。发现2020年时亚洲水塔共发育冰湖14 310个,面积1 148.3 km2,其中西藏自治区冰湖7 312个,面积642.6 km2。1990年以来,亚洲水塔冰湖数量和面积增长均超过20%。评估发现,亚洲水塔有1 256个极高危险和高危险冰湖,其中182个冰湖存在溃决的极高风险或高风险。喜马拉雅山东段和藏东南地区是当前亚洲水塔冰湖最为集中、扩张幅度最大、溃决洪水灾害最为严重的区域,也是溃决风险极高冰湖分布最多的区域,为冰湖研究和灾害防控的重点区域。在未来的冰湖研究和预警防控工作中,需要提高对冰湖溃决风险的精准识别,加强冰湖溃决监测预警体系建设,强化布局冰湖溃决洪水的次生灾害和跨境威胁的应对等。
青藏高原超常的气候变暖引起亚洲水塔失衡。亚洲水塔失衡伴随着冰川普遍退缩、冰崩以及冰湖溃决等冰冻圈灾害频发,进而冲毁公路、桥梁和村庄,对下游居民生命财产安全和社会经济发展造成严重影响。在第二次青藏高原综合科学考察中,通过实地考察、遥感监测和台站观测等手段,对亚洲水塔冰湖和冰湖溃决进行了广泛深入的研究。发现2020年时亚洲水塔共发育冰湖14 310个,面积1 148.3 km2,其中西藏自治区冰湖7 312个,面积642.6 km2。1990年以来,亚洲水塔冰湖数量和面积增长均超过20%。评估发现,亚洲水塔有1 256个极高危险和高危险冰湖,其中182个冰湖存在溃决的极高风险或高风险。喜马拉雅山东段和藏东南地区是当前亚洲水塔冰湖最为集中、扩张幅度最大、溃决洪水灾害最为严重的区域,也是溃决风险极高冰湖分布最多的区域,为冰湖研究和灾害防控的重点区域。在未来的冰湖研究和预警防控工作中,需要提高对冰湖溃决风险的精准识别,加强冰湖溃决监测预警体系建设,强化布局冰湖溃决洪水的次生灾害和跨境威胁的应对等。
青藏高原超常的气候变暖引起亚洲水塔失衡。亚洲水塔失衡伴随着冰川普遍退缩、冰崩以及冰湖溃决等冰冻圈灾害频发,进而冲毁公路、桥梁和村庄,对下游居民生命财产安全和社会经济发展造成严重影响。在第二次青藏高原综合科学考察中,通过实地考察、遥感监测和台站观测等手段,对亚洲水塔冰湖和冰湖溃决进行了广泛深入的研究。发现2020年时亚洲水塔共发育冰湖14 310个,面积1 148.3 km2,其中西藏自治区冰湖7 312个,面积642.6 km2。1990年以来,亚洲水塔冰湖数量和面积增长均超过20%。评估发现,亚洲水塔有1 256个极高危险和高危险冰湖,其中182个冰湖存在溃决的极高风险或高风险。喜马拉雅山东段和藏东南地区是当前亚洲水塔冰湖最为集中、扩张幅度最大、溃决洪水灾害最为严重的区域,也是溃决风险极高冰湖分布最多的区域,为冰湖研究和灾害防控的重点区域。在未来的冰湖研究和预警防控工作中,需要提高对冰湖溃决风险的精准识别,加强冰湖溃决监测预警体系建设,强化布局冰湖溃决洪水的次生灾害和跨境威胁的应对等。
随着全球气温升高,冰川不断消融,冰湖溃决现象频发,尤其在西藏地区发生频率较高,给当地人民造成巨大生命财产损失。另外,冰湖作为内陆水系统的主要组成部分之一,其面积变化与气候变化和人类活动密切相关,关注冰湖演化对保护周边地区的人类安全和监测地区生态变化有理论和实践意义。本文提出基于SAR极化增强与形态学运算的水陆边界提取方法对冰湖进行高精度自动识别,以青藏高原娘约错冰湖为研究区,对2018—2021年冰湖进行动态变化提取,并结合气候和地形等因素进行联合分析。结果表明,娘约错冰湖附近没有典型的冰川融水,其主要补给源为地表径流和大气降水,属于稳定性湖泊。其面积增长趋势缓慢,地形因素是其稳定的主要原因,对于下游的鲁朗镇和川藏铁路没有冰湖溃决的危险。
随着全球气温升高,冰川不断消融,冰湖溃决现象频发,尤其在西藏地区发生频率较高,给当地人民造成巨大生命财产损失。另外,冰湖作为内陆水系统的主要组成部分之一,其面积变化与气候变化和人类活动密切相关,关注冰湖演化对保护周边地区的人类安全和监测地区生态变化有理论和实践意义。本文提出基于SAR极化增强与形态学运算的水陆边界提取方法对冰湖进行高精度自动识别,以青藏高原娘约错冰湖为研究区,对2018—2021年冰湖进行动态变化提取,并结合气候和地形等因素进行联合分析。结果表明,娘约错冰湖附近没有典型的冰川融水,其主要补给源为地表径流和大气降水,属于稳定性湖泊。其面积增长趋势缓慢,地形因素是其稳定的主要原因,对于下游的鲁朗镇和川藏铁路没有冰湖溃决的危险。
随着全球气温升高,冰川不断消融,冰湖溃决现象频发,尤其在西藏地区发生频率较高,给当地人民造成巨大生命财产损失。另外,冰湖作为内陆水系统的主要组成部分之一,其面积变化与气候变化和人类活动密切相关,关注冰湖演化对保护周边地区的人类安全和监测地区生态变化有理论和实践意义。本文提出基于SAR极化增强与形态学运算的水陆边界提取方法对冰湖进行高精度自动识别,以青藏高原娘约错冰湖为研究区,对2018—2021年冰湖进行动态变化提取,并结合气候和地形等因素进行联合分析。结果表明,娘约错冰湖附近没有典型的冰川融水,其主要补给源为地表径流和大气降水,属于稳定性湖泊。其面积增长趋势缓慢,地形因素是其稳定的主要原因,对于下游的鲁朗镇和川藏铁路没有冰湖溃决的危险。